scholarly journals Microsecond Active-Site Dynamics Primarily control Proteolytic Activity of Bromelain: A Single Molecular Level Study with a Denaturant, a Stabilizer and a Macromolecular Crowder

BBA Advances ◽  
2022 ◽  
pp. 100041
Author(s):  
Nilimesh Das ◽  
Sandeep Yadav ◽  
Kuldeep Singh Negi ◽  
Ejaj Tariff ◽  
Pratik Sen
Catalysts ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1114
Author(s):  
Shih-Cheng Li ◽  
Yen-Chun Lin ◽  
Yi-Pei Li

Porous zeolite catalysts have been widely used in the industry for the conversion of fuel-range molecules for decades. They have the advantages of higher surface area, better hydrothermal stability, and superior shape selectivity, which make them ideal catalysts for hydrocarbon cracking in the petrochemical industry. However, the catalytic activity and selectivity of zeolites for hydrocarbon cracking are significantly affected by the zeolite topology and composition. The aim of this review is to survey recent investigations on hydrocarbon cracking and secondary reactions in micro- and mesoporous zeolites, with the emphasis on the studies of the effects of different porous environments and active site structures on alkane adsorption and activation at the molecular level. The pros and cons of different computational methods used for zeolite simulations are also discussed in this review.


2018 ◽  
Vol 20 (3) ◽  
pp. 671-679 ◽  
Author(s):  
Zhongzhe Wei ◽  
Shanjun Mao ◽  
Fanfei Sun ◽  
Jing Wang ◽  
Bingbao Mei ◽  
...  

The face to face located terdentate and tetrahedral coordinated Co atoms in CoS2/PC form a “synergic active site pair”, showing superior activity and selectivity in the hydrogenation of nitroarenes.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. SCI-17-SCI-17
Author(s):  
Peter J. Lenting

Many natural enzymes need the assistance of protein cofactors to catalyze chemical reactions at a physiologically relevant speed and several of the enzymes that make up for the coagulation cascade are no exception in this regard. Notably, activated factors VII, IX and X display relatively poor enzymatic activity towards their respective macromolecular substrates. The reason for their low proteolytic activity originates from a number of structural restrictions. For instance, not all enzymes are capable to efficiently fold their new amino-terminus into the active site pocket, leaving the catalytic triad immature. Furthermore, serine protease activation is often associated with a reduced plasticity of the protease domain, which improves their proteolytic activity. Nevertheless, some enzymes still require additional stabilization to reduce flexibility of their protease domain. Protein cofactors are designed to optimize the proteolytic activity of such serine proteases, and can improve the catalytic efficiency of these enzymes by one-thousand to one-million fold. The allosteric changes induced by these protein cofactors are specific to each cofactor/enzyme pair. When focusing on the cofactor role of Factor VIIIa (FVIIIa; which stimulates the catalytic activity of factor IXa; FIXa), several aspects are of importance. First, FVIIIa has high affinity for phosphatidylserine-containing phospholipid-membranes, favoring formation of the FVIIIa/FIXa complex at the membrane surface. Being assembled at the membrane surface limits their movements to two dimensions, and enforces the affinity between both proteins. Second, the interactions between FVIIIa and FIXa involve an extended protein surface, which includes interactions between the FVIIIa light chain and FIXa light chain as well as between the FVIIIa A2 domain and the FIXa protease domain. Due to this extended interactive surface, the complex mimics a staked tree, in which FVIIIa orients the FIXa active site at the appropriate distance from the membrane surface. Moreover, binding of the FVIIIa A2 domain to FIXa surface loops reduces flexibility of the protease domain, and it is likely that allosteric changes induced by the A2-domain optimize the conformation of the active site region. Finally, FVIIIa provides also a binding site for the substrate FX. This not only allows FVIIa to function as a molecular bridge between enzyme and substrate, but also helps to align the FX activation peptide with the FIXa active site. This multistep process by which FVIII acts as a cofactor for FIXa may help us to understand how other non-FVIII molecules can be used to stimulate FIXa activity. Several molecular entities have been reported that are enhancing FIXa activity, including short synthetic peptides, monoclonal antibodies and, perhaps best known at this moment, bispecific antibodies that bind both FIXa and FX. Given the complex molecular structure that FVIIIa has and needs to stimulate FIXa activity, it is of interest to reflect on how this translates to the non-FVIII molecules in terms of regulation and potential cofactor activity. Differences in regulation and activity are of particular relevance for laboratory monitoring of these molecules and in the therapeutic setting. Knowing these limitations will help us to optimize the therapeutic application of non-FVIII molecules. Disclosures Lenting: Spark Therapeutics: Honoraria; Catalyst Biosciences: Honoraria; Sobi: Honoraria; Shire/Takeda: Honoraria; NovoNordisk: Honoraria; Biotest: Honoraria; LFB: Honoraria; Roche: Honoraria; laelaps therapeutics: Equity Ownership.


ChemInform ◽  
2010 ◽  
Vol 31 (30) ◽  
pp. no-no
Author(s):  
P. A. Simonov ◽  
S. Yu. Troitskii ◽  
V. A. Likholobov

2002 ◽  
Vol 80 (6) ◽  
pp. 622-625 ◽  
Author(s):  
Martin Bakker ◽  
Fred van Rantwijk ◽  
Roger A Sheldon

The catalytic Zn2+ ion was extracted from thermolysin, which had been covalently bound to Eupergit C. The apo-enzyme incorporated the oxometallate anions MoO42–, SeO42–, and WO42– with partial restoration of the proteolytic activity. Tungstate thermolysin was moderately active in the sulfoxidation of thioanisole by hydrogen peroxide, whereas its activity towards phenylmercaptoacetophenone, which was designed to bind well in the active site of thermolysin, was much higher.


2013 ◽  
Vol 288 (29) ◽  
pp. 21367-21375 ◽  
Author(s):  
Jacob Lund ◽  
Ole H. Olsen ◽  
Esben S. Sørensen ◽  
Henning R. Stennicke ◽  
Helle H. Petersen ◽  
...  

ADAMDEC1 (Decysin-1) is a putative ADAM (a disintegrin and metalloprotease)-like metalloprotease with an unknown physiological role, selectively expressed in mature dendritic cells and macrophages. When compared with other members of the ADAM family, ADAMDEC1 displays some unusual features. It lacks the auxiliary cysteine-rich, EGF, and transmembrane domains, as well as the cytoplasmic tail. The active site of ADAMDEC1 is unique by being the only mammalian ADAM protease with a non-histidine zinc ligand, having an aspartic acid residue instead. Here we demonstrate that ADAMDEC1, despite these unique features, functions as an active metalloprotease. Thus, ADAMDEC1 is secreted as a mature, glycosylated, and proteolytically active metalloprotease, capable of cleaving macromolecular substrates. In the recombinant form, three of the four potential N-linked glycosylation sites are modified by carbohydrate attachment. Substitution of basic residues at the predicted proprotein convertase cleavage site blocks proprotein processing, revealing both specific ADAMDEC1-dependent and specific ADAMDEC1-independent cleavage of the prodomain. The pro-form of ADAMDEC1 does not have proteolytic activity, demonstrating that the prodomain of ADAMDEC1, like in other members of the ADAM family, confers catalytic latency. Interestingly, the proteolytic activity of mature ADAMDEC1 can be significantly enhanced when a canonical ADAM active site with three zinc-coordinating histidine residues is introduced.


1968 ◽  
Vol 110 (4) ◽  
pp. 621-629 ◽  
Author(s):  
Peter Jones ◽  
A. Suggett

1. The mechanisms of catalase action advanced by Jones & Wynne-Jones (1962) and by Nicholls (1964) are compared in terms of their relative plausibilities and their utility for extension to accommodate more recent experimental information. 2. A revised formal mechanism is advanced that avoids the less satisfactory features of these mechanisms and attempts to account for the roles of catalase sub-units in both reversible and irreversible deactivation phenomena. 3. Theoretical studies of the redox chemistry of peroxides are used to provide the basis for a discussion of the mechanism of the redox act in catalatic action at the molecular level. It is suggested that an important feature of catalase action may be a mediation of the formation of a reactive intermediate by stereospecifically located acid–base functions in the active site. 4. A more detailed statement of this concept is attempted in terms of a hypothetical partial molecular model for the composition and stereochemistry of the active site of catalase. The utility of this model in describing the catalatic and peroxidatic actions of catalase is assessed.


2019 ◽  
Vol 75 (8) ◽  
pp. 733-742 ◽  
Author(s):  
Hsien-Wei Yeh ◽  
Kuan-Hung Lin ◽  
Syue-Yi Lyu ◽  
Yi-Shan Li ◽  
Chun-Man Huang ◽  
...  

p-Hydroxymandelate oxidase (Hmo) is a flavin mononucleotide (FMN)-dependent enzyme that oxidizes mandelate to benzoylformate. How the FMN-dependent oxidation is executed by Hmo remains unclear at the molecular level. A continuum of snapshots from crystal structures of Hmo and its mutants in complex with physiological/nonphysiological substrates, products and inhibitors provides a rationale for its substrate enantioselectivity/promiscuity, its active-site geometry/reactivity and its direct hydride-transfer mechanism. A single mutant, Y128F, that extends the two-electron oxidation reaction to a four-electron oxidative decarboxylation reaction was unexpectedly observed. Biochemical and structural approaches, including biochemistry, kinetics, stable isotope labeling and X-ray crystallography, were exploited to reach these conclusions and provide additional insights.


1999 ◽  
Vol 67 (9) ◽  
pp. 4326-4333 ◽  
Author(s):  
Yury V. Matsuka ◽  
Subramonia Pillai ◽  
Siddeswar Gubba ◽  
James M. Musser ◽  
Stephen B. Olmsted

ABSTRACT The extracellular cysteine protease from Streptococcus pyogenes is a virulence factor that plays a significant role in host-pathogen interaction. Streptococcal protease is expressed as an inactive 40-kDa precursor that is autocatalytically converted into a 28-kDa mature (active) enzyme. Replacement of the single cysteine residue involved in formation of the enzyme active site with serine (C192S mutation) abolished detectable proteolytic activity and eliminated autocatalytic processing of zymogen to the mature form. In the present study, we investigated activity of the wild-type (wt) streptococcal protease toward human fibrinogen and bovine casein. The former is involved in blood coagulation, wound healing, and other aspects of hemostasis. Treatment with streptococcal protease resulted in degradation of the COOH-terminal region of fibrinogen α chain, indicating that fibrinogen may serve as an important substrate for this enzyme during the course of human infection. Polyclonal antibodies generated against recombinant 40- and 28-kDa (r40- and r28-kDa) forms of the C192S streptococcal protease mutant exhibited high enzyme-linked immunosorbent assay titers but demonstrated different inhibition activities toward proteolytic action of the wt enzyme. Activity of the wt protease was readily inhibited when the reaction was carried out in the presence of antibodies generated against r28-kDa C192S mutant. Antibodies produced against r40-kDa C192S mutant had no significant effect on proteolysis. These data suggest that the presence of the NH2-terminal prosegment prevents generation of functionally active antibodies and indicate that inhibition activity of antibodies most likely depends on their ability to bind the active-site region epitope(s) of the protein.


2019 ◽  
Author(s):  
Hedvig Tamman ◽  
Katleen Van Nerom ◽  
Hiraku Takada ◽  
Niels Vandenberk ◽  
Daniel Scholl ◽  
...  

Bifunctional Rel stringent factors, the most broadly distributed class of RSHs, are ribosome-associated enzymes that transfer a pyrophosphate group from ATP onto the 3′ of GTP or GDP to synthesize (p)ppGpp and also catalyse the 3′ pyrophosphate hydrolysis of the alarmone to degrade it. The precise regulation of these enzymes seems to be a complex allosteric mechanism, and despite decades of research, it is unclear how the two opposing activities of Rel are controlled at the molecular level. Here we show that a stretch/recoil guanosine-switch mechanism controls the catalytic cycle of T. thermophilus Rel (RelTf). The binding of GDP/ATP stretches apart the NTD catalytic domains of RelTf (RelTtNTD) activating the synthetase domain and allosterically blocking the hydrolase active site. Conversely, binding of ppGpp unlocks the hydrolase domain and triggers recoil of both NTDs, which partially buries the synthetase active site and precludes the binding of synthesis precursors. This allosteric mechanism acts as an activity switch preventing futile cycles of alarmone synthesis and degradation.


Sign in / Sign up

Export Citation Format

Share Document