Pulsed electrical stimulation benefits wound healing by activating skin fibroblasts through the TGFβ1/ERK/NF-κB axis

2016 ◽  
Vol 1860 (7) ◽  
pp. 1551-1559 ◽  
Author(s):  
Yongliang Wang ◽  
Mahmoud Rouabhia ◽  
Ze Zhang
Author(s):  
Mokhamad Tirono ◽  
Farid Samsu Hananto ◽  
Ahmad Abtokhi

Background: Treatment of wounds in diabetes often gets less than perfect healing. One of the reasons for the difficulty in treating wounds in diabetes is the growth of aerobic and anaerobic bacteria. This study aims to determine the pulse voltage and treatment time that can optimally inactivate bacteria, and their effect on wound healing in mice suffering from diabetes. Methods: The study used electrical stimulation with a direct voltage of 10 volts given a pulse voltage of 50-80 volts, a width of 50 µs, and the number of pulses of 65 per second. The research samples were Staphylococcus aureus (S. aureus) and Pseudo-monas aeruginosa (P. aeruginosa) bacteria that grew on beef and mice (Mus musculus) with diabetes. The treatment for S. aureus and P. aeruginosa bacteria was carried out using a pulse voltage of 50-80 volts for 5-15 min/day and repeated for 3 days. Meanwhile, treatment of mice wounds was carried out with a pulse voltage of 80 volts for 15 min/day and repeated for 7 days. Results: The results showed that treatment with a pulse voltage of 50-80 volts and a treatment time of 5-15 min significantly reduced the number of S. aureus and P. aeruginosa bacteria in beef (p£0.05). Treatment with a pulse voltage of 80 volts for 15 min made beef free from bacteria. Meanwhile, treatment with a pulse voltage of 80 volts for 15 min per day for seven days resulted in the wound state of three mice in the maturation phase and two mice in the proliferation phase on day 8 with an average wound area of 0.108 cm 2. Conclusion: The treatment with a pulse voltage of 80 volts for 15 min made the beef sterile, the mice wounds healed quickly, and the mice not stressed. The higher the blood glucose level, the slower the wound healing process.  


2022 ◽  
Author(s):  
Xingxing Shi ◽  
Yingxin Chen ◽  
Yi Zhao ◽  
Mingzhou Ye ◽  
Shuidong Zhang ◽  
...  

Piezoelectric membranes activated by ultrasound waves can provide electrical stimulation to promote wound healing.


2019 ◽  
Vol 3 (10) ◽  
pp. 1900106 ◽  
Author(s):  
Kaiping Wang ◽  
Udit Parekh ◽  
Jonathan K. Ting ◽  
Natasha A. D. Yamamoto ◽  
Juan Zhu ◽  
...  

2017 ◽  
Vol 37 (2) ◽  
Author(s):  
Dong Yang ◽  
Jun-hua Xu ◽  
Ren-jie Shi

Wound healing is the main problem in the therapy of anal fistula (AF). Daphne genkwa root has been traditionally used as an agent to soak sutures in operation of AF patients, but its function in wound healing remains largely unclear. The aim of the present study was to illuminate mechanisms of D. genkwa root treatment on AF. In the present study, 60 AF patients after surgery were randomly divided into two groups, external applied with or without the D. genkwa extractive. Wound healing times were compared and granulation tissues were collected. In vitro, we constructed damaged human skin fibroblasts (HSFs) with the treatment of TNF-α (10 μg/ml). Cell Count Kit-8 (CCK-8) and flow cytometry analysis were used to determine the effects of D. genkwa root extractive on cell viability, cell cycle and apoptosis of damaged HSFs. Furthermore, protein levels of TGF-β, COL1A1, COL3A1, Timp-1, matrix metalloproteinase (MMP)-3 (MMP-3) and MEK/ERK signalling pathways were investigated both in vivo and in vitro. Results showed that D. genkwa root extractive greatly shortens the wound healing time in AF patients. In granulation tissues and HSFs, treatment with the extractive significantly elevated the expressions of COL1A1, COL3A1, Timp-1, c-fos and Cyclin D1, while reduced the expression of MMP-3. Further detection presented that MEK/ERK signalling was activated after the stimulation of extractive in HSFs. Our study demonstrated that extractive from D. genkwa root could effectively improve wound healing in patients with AF via the up-regulation of fibroblast proliferation and expressions of COL1A1 and COL3A1.


2019 ◽  
Vol 133 (9) ◽  
Author(s):  
Tingting Zeng ◽  
Xiaoyi Wang ◽  
Wei Wang ◽  
Qiling Feng ◽  
Guojuan Lao ◽  
...  

Abstract Diabetic foot ulcer is a life-threatening clinical problem in diabetic patients. Endothelial cell-derived small extracellular vesicles (sEVs) are important mediators of intercellular communication in the pathogenesis of several diseases. However, the exact mechanisms of wound healing mediated by endothelial cell-derived sEVs remain unclear. sEVs were isolated from human umbilical vein endothelial cells (HUVECs) pretreated with or without advanced glycation end products (AGEs). The roles of HUVEC-derived sEVs on the biological characteristics of skin fibroblasts were investigated both in vitro and in vivo. We demonstrate that sEVs derived from AGEs-pretreated HUVECs (AGEs-sEVs) could inhibit collagen synthesis by activating autophagy of human skin fibroblasts. Additionally, treatment with AGEs-sEVs could delay the wound healing process in Sprague–Dawley (SD) rats. Further analysis indicated that miR-106b-5p was up-regulated in AGEs-sEVs and importantly, in exudate-derived sEVs from patients with diabetic foot ulcer. Consequently, sEV-mediated uptake of miR-106b-5p in recipient fibroblasts reduces expression of extracellular signal-regulated kinase 1/2 (ERK1/2), resulting in fibroblasts autophagy activation and subsequent collagen degradation. Collectively, our data demonstrate that miR-106b-5p could be enriched in AGEs-sEVs, then decreases collagen synthesis and delays cutaneous wound healing by triggering fibroblasts autophagy through reducing ERK1/2 expression.


2009 ◽  
Author(s):  
S.A. Weber ◽  
P.A. Vonhoff ◽  
F.J. Owens ◽  
J.A. Byrne ◽  
E.T. McAdams

Sign in / Sign up

Export Citation Format

Share Document