The mTORC2/PKC pathway sustains compensatory insulin secretion of pancreatic β cells in response to metabolic stress

2017 ◽  
Vol 1861 (8) ◽  
pp. 2039-2047 ◽  
Author(s):  
Yun Xie ◽  
Canqi Cui ◽  
Aifang Nie ◽  
Yan Wang ◽  
Qicheng Ni ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Daniela Nasteska ◽  
Nicholas H. F. Fine ◽  
Fiona B. Ashford ◽  
Federica Cuozzo ◽  
Katrina Viloria ◽  
...  

AbstractTranscriptionally mature and immature β-cells co-exist within the adult islet. How such diversity contributes to insulin release remains poorly understood. Here we show that subtle differences in β-cell maturity, defined using PDX1 and MAFA expression, contribute to islet operation. Functional mapping of rodent and human islets containing proportionally more PDX1HIGH and MAFAHIGH β-cells reveals defects in metabolism, ionic fluxes and insulin secretion. At the transcriptomic level, the presence of increased numbers of PDX1HIGH and MAFAHIGH β-cells leads to dysregulation of gene pathways involved in metabolic processes. Using a chemogenetic disruption strategy, differences in PDX1 and MAFA expression are shown to depend on islet Ca2+ signaling patterns. During metabolic stress, islet function can be restored by redressing the balance between PDX1 and MAFA levels across the β-cell population. Thus, preserving heterogeneity in PDX1 and MAFA expression, and more widely in β-cell maturity, might be important for the maintenance of islet function.


2020 ◽  
Vol 33 (5) ◽  
pp. 671-674
Author(s):  
Tashunka Taylor-Miller ◽  
Jayne Houghton ◽  
Paul Munyard ◽  
Yadlapalli Kumar ◽  
Clinda Puvirajasinghe ◽  
...  

AbstractBackgroundCongenital hyperinsulinism (CHI), a condition characterized by dysregulation of insulin secretion from the pancreatic β cells, remains one of the most common causes of hyperinsulinemic, hypoketotic hypoglycemia in the newborn period. Mutations in ABCC8 and KCNJ11 constitute the majority of genetic forms of CHI.Case presentationA term macrosomic male baby, birth weight 4.81 kg, born to non-consanguineous parents, presented on day 1 of life with severe and persistent hypoglycemia. The biochemical investigations confirmed a diagnosis of CHI. Diazoxide was started and progressively increased to 15 mg/kg/day to maintain normoglycemia. Sequence analysis identified compound heterozygous mutations in ABCC8 c.4076C>T and c.4119+1G>A inherited from the unaffected father and mother, respectively. The mutations are reported pathogenic. The patient is currently 7 months old with a sustained response to diazoxide.ConclusionsBiallelic ABCC8 mutations are known to result in severe, diffuse, diazoxide-unresponsive hypoglycemia. We report a rare patient with CHI due to compound heterozygous mutations in ABCC8 responsive to diazoxide.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Nana Kobayashi ◽  
Shogo Okazaki ◽  
Oltea Sampetrean ◽  
Junichiro Irie ◽  
Hiroshi Itoh ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Mengmeng Liu ◽  
Lele Ren ◽  
Xiangqin Zhong ◽  
Yaqin Ding ◽  
Tao Liu ◽  
...  

2016 ◽  
Vol 14 (11) ◽  
pp. 823-834 ◽  
Author(s):  
Xiao-Meng WAN ◽  
Mu ZHANG ◽  
Pei ZHANG ◽  
Zhi-Shen XIE ◽  
Feng-Guo XU ◽  
...  

2012 ◽  
Vol 287 (36) ◽  
pp. 30368-30375 ◽  
Author(s):  
Xin-Ya Chen ◽  
Xiu-Ting Gu ◽  
Hexige Saiyin ◽  
Bo Wan ◽  
Yu-Jing Zhang ◽  
...  

2011 ◽  
Vol 120 (9) ◽  
pp. 403-413 ◽  
Author(s):  
Mark A. Russell ◽  
Noel G. Morgan

Common polymorphisms within the FTO (fat mass and obesity-associated) gene correlate with increased BMI (body mass index) and a rising risk of Type 2 diabetes. FTO is highly expressed in the brain but has also been detected in peripheral tissues, including the endocrine pancreas, although its function there is unclear. The aim of the present study was to investigate the role of FTO protein in pancreatic β-cells using a conditional expression system developed in INS-1 cells. INS-1 cells were stably transfected with FTO–HA (haemagluttinin) incorporated under the control of a tetracycline-inducible promoter. Induction of FTO protein resulted in localization of the tagged protein to the nucleus. The level of FTO–HA protein achieved in transfected cells was tightly regulated, and experiments with selective inhibitors revealed that FTO–HA is rapidly degraded via the ubiquitin/proteasome pathway. The nuclear localization was not altered by proteasome inhibitors, although following treatment with PYR-41, an inhibitor of ubiquitination, some of the protein adopted a perinuclear localization. Unexpectedly, modestly increased expression of FTO–HA selectively enhanced the first phase of insulin secretion when INS-1 monolayers or pseudoislets were stimulated with 20 mM glucose, whereas the second phase remained unchanged. The mechanism responsible for the potentiation of glucose-induced insulin secretion is unclear; however, further experiments revealed that it did not involve an increase in insulin biosynthesis or any changes in STAT3 (signal transducer and activator of transcription 3) expression. Taken together, these results suggest that the FTO protein may play a hitherto unrecognized role in the control of first-phase insulin secretion in pancreatic β-cells.


2005 ◽  
Vol 15 (4) ◽  
pp. 1181-1184 ◽  
Author(s):  
Boris Ročić ◽  
Marijana Vučić-Lovrenčić ◽  
Nevenka Poje ◽  
Mirko Poje ◽  
Federico Bertuzzi

Sign in / Sign up

Export Citation Format

Share Document