Potential role of hepatic lipase in the accretion of docosahexaenoic acid (DHA) by the brain

Author(s):  
Dhavamani Sugasini ◽  
Peng Yang ◽  
Dominic Ng ◽  
Sumeet Khetarpal ◽  
Cecilia Vitali ◽  
...  
2020 ◽  
Vol 25 (42) ◽  
pp. 4510-4522 ◽  
Author(s):  
Biancamaria Longoni ◽  
Irene Fasciani ◽  
Shivakumar Kolachalam ◽  
Ilaria Pietrantoni ◽  
Francesco Marampon ◽  
...  

: Exosomes are extracellular vesicles produced by eukaryotic cells that are also found in most biological fluids and tissues. While they were initially thought to act as compartments for removal of cellular debris, they are now recognized as important tools for cell-to-cell communication and for the transfer of pathogens between the cells. They have attracted particular interest in neurodegenerative diseases for their potential role in transferring prion-like proteins between neurons, and in Parkinson’s disease (PD), they have been shown to spread oligomers of α-synuclein in the brain accelerating the progression of this pathology. A potential neuroprotective role of exosomes has also been equally proposed in PD as they could limit the toxicity of α-synuclein by clearing them out of the cells. Exosomes have also attracted considerable attention for use as drug vehicles. Being nonimmunogenic in nature, they provide an unprecedented opportunity to enhance the delivery of incorporated drugs to target cells. In this review, we discuss current knowledge about the potential neurotoxic and neuroprotective role of exosomes and their potential application as drug delivery systems in PD.


2019 ◽  
Vol 77 (8) ◽  
pp. 1531-1550 ◽  
Author(s):  
Katarzyna Walczak ◽  
Artur Wnorowski ◽  
Waldemar A. Turski ◽  
Tomasz Plech

Abstract Kynurenic acid (KYNA) is an endogenous tryptophan metabolite exerting neuroprotective and anticonvulsant properties in the brain. However, its importance on the periphery is still not fully elucidated. KYNA is produced endogenously in various types of peripheral cells, tissues and by gastrointestinal microbiota. Furthermore, it was found in several products of daily human diet and its absorption in the digestive tract was evidenced. More recent studies were focused on the potential role of KYNA in carcinogenesis and cancer therapy; however, the results were ambiguous and the biological activity of KYNA in these processes has not been unequivocally established. This review aims to summarize the current views on the relationship between KYNA and cancer. The differences in KYNA concentration between physiological conditions and cancer, as well as KYNA production by both normal and cancer cells, will be discussed. The review also describes the effect of KYNA on cancer cell proliferation and the known potential molecular mechanisms of this activity.


Cardiology ◽  
1993 ◽  
Vol 83 (3) ◽  
pp. 208-211 ◽  
Author(s):  
Atsushi Wada ◽  
Tsugiyasu Kanda ◽  
Rikuo Hayashi ◽  
Susumu Imai ◽  
Tadashi Suzuki ◽  
...  

Cephalalgia ◽  
2008 ◽  
Vol 28 (7) ◽  
pp. 714-722 ◽  
Author(s):  
P Sarchielli ◽  
I Rainero ◽  
F Coppola ◽  
C Rossi ◽  
ML Mancini ◽  
...  

The study set out to investigate the role of corticotrophin-releasing factor (CRF) and orexin-A in chronic migraine (CM) and medication-overuse headache (MOH). Twenty-seven patients affected by CM and 30 with MOH were enrolled. Control CSF specimens were obtained from 20 age-matched subjects who underwent lumbar puncture for diagnostic purposes, and in all of them CSF and blood tests excluded central nervous system or systemic diseases. Orexin-A and CRF were determined by radioimmunoassay methods. Significantly higher levels of orexin-A and CRF were found in the CSF of MOH and to a lesser extent in patients with CM compared with control subjects (orexin-A: P < 0.001 and P < 0.02; CRF: P < 0.002 and P < 0.0003). A significant positive correlation was also found between CSF orexin-A values and those of CRF ( R = 0.71; P < 0.0008), monthly drug intake group ( R = 0.39; P < 0.03) and scores of a self-completion 10-item instrument to measure dependence upon a variety of substances, the Leeds Dependence Questionnaire (LDQ) in the MOH group ( R = 0.68; P < 0.0003). The significantly higher orexin-A levels found in CM and MOH can be interpreted as a compensatory response to chronic head pain or, alternatively, as an expression of hypothalamic response to stress due to chronic pain. A potential role for orexin-A in driving drug seeking in MOH patients through activation of stress pathways in the brain can also be hypothesized.


2006 ◽  
Vol 67 (4) ◽  
pp. 990-991
Author(s):  
Enzo Emanuele ◽  
Valentina Olivieri ◽  
Alessia Aldeghi ◽  
Valentina Martinelli

2007 ◽  
Vol 293 (3) ◽  
pp. C1181-C1185 ◽  
Author(s):  
Sandra B. Ross ◽  
Catherine M. Fuller ◽  
James K. Bubien ◽  
Dale J. Benos

Despite intensive research, brain tumors remain among the most difficult type of malignancies to treat, due largely to their diffusely invasive nature and the associated difficulty of adequate surgical resection. To migrate through the brain parenchyma and to proliferate, glioma cells must be capable of significant changes in shape and volume. We have previously reported that glioma cells express an amiloride- and psalmotoxin-sensitive cation conductance that is not found in normal human astrocytes. In the present study, we investigated the potential role of this ion channel to mediate regulatory volume increase in glioma cells. We found that the ability of the cells to volume regulate subsequent to cell shrinkage by hyperosmolar solutions was abolished by both amiloride and psalmotoxin 1. This toxin is thought to be a specific peptide inhibitor of acid-sensing ion channel (ASIC1), a member of the Deg/ENaC superfamily of cation channels. We have previously shown this toxin to be an effective blocker of the glioma cation conductance. Our data suggest that one potential role for this conductance may be to restore cell volume during the cell's progression thorough the cell cycle and while the tumor cell migrates within the interstices of the brain.


2013 ◽  
Vol 59 (1) ◽  
pp. 25-50 ◽  
Author(s):  
A.V. Alessenko

The review discusses the functional role of sphingolipids in the pathogenesis of Alzheimer's disease. Certain evidence exist that the imbalance of sphingolipids such as sphingomyelin, ceramide, sphingosine, sphingosine-1-phosphate and galactosylceramide in the brain of animals and humans, in the cerebrospinal fluid and blood plasma of patients with Alzheimer's disease play a crucial role in neuronal function by regulating growth, differentiation and cell death in CNS. Activation of sphingomyelinase, which leads to the accumulation of the proapoptotic agent, ceramide, can be considered as a new mechanism for AD and may be a prerequisite for the treatment of this disease by using drugs that inhibit sphingomyelinase activity. The role of sphingolipids as biomarkers for the diagnosis of the early stage of Alzheimer's disease and monitoring the effectiveness of treatment with new drugs is discussed.


Sign in / Sign up

Export Citation Format

Share Document