Protective role of SIRT5 against motor deficit and dopaminergic degeneration in MPTP-induced mice model of Parkinson's disease

2015 ◽  
Vol 281 ◽  
pp. 215-221 ◽  
Author(s):  
Lei Liu ◽  
Carina Peritore ◽  
Jessica Ginsberg ◽  
Jennifer Shih ◽  
Siddharth Arun ◽  
...  
Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 674
Author(s):  
Han-Lin Chiang ◽  
Yih-Ru Wu ◽  
Yi-Chun Chen ◽  
Hon-Chung Fung ◽  
Chiung-Mei Chen

Parkinson’s disease (PD) is a neurodegenerative disease with the pathological hallmark of Lewy bodies and Lewy neurites composed of α-synuclein. The SNP rs591323 is one of the risk loci located near the FGF20 gene that has been implicated in PD. The variation of FGF20 in the 3′ untranslated region was shown to increase α-synuclein expression. We examined the association of rs591323 with the risk of PD in a Taiwanese population and conducted a meta-analysis, including our study and two other studies from China, to further confirm the role of this SNP in Taiwanese/Chinese populations. A total of 586 patients with PD and 586 health controls (HCs) were included in our study. We found that the minor allele (A) and the AA + GA genotype under the dominant model are significantly less frequent in PD than in controls. The meta-analysis consisted of 1950 patients with PD and 2073 healthy controls from three studies. There was significant association between rs591323 and the risk of PD in the additive (Z = −3.96; p < 0.0001) and the dominant models (Z = −4.01; p < 0.0001). Our study results and the meta-analysis support the possible protective role of the rs591323 A allele in PD in Taiwanese/Chinese populations.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Yueran Li ◽  
Jinhua Wu ◽  
Xuming Yu ◽  
Shufang Na ◽  
Ke Li ◽  
...  

CYP2J proteins are present in the neural cells of human and rodent brain regions. The aim of this study was to investigate the role of brain CYP2J in Parkinson’s disease. Rats received right unilateral injection with lipopolysaccharide (LPS) or 6-hydroxydopamine (6-OHDA) in the substantia nigra following transfection with or without the CYP2J3 expression vector. Compared with LPS-treated rats, CYP2J3 transfection significantly decreased apomorphine-induced rotation by 57.3% at day 12 and 47.0% at day 21 after LPS treatment; moreover, CYP2J3 transfection attenuated the accumulation of α-synuclein. Compared with the 6-OHDA group, the number of rotations by rats transfected with CYP2J3 decreased by 59.6% at day 12 and 43.5% at day 21 after 6-OHDA treatment. The loss of dopaminergic neurons and the inhibition of the antioxidative system induced by LPS or 6-OHDA were attenuated following CYP2J3 transfection. The TLR4-MyD88 signaling pathway was involved in the downregulation of brain CYP2J induced by LPS, and CYP2J transfection upregulated the expression of Nrf2 via the inhibition of miR-340 in U251 cells. The data suggest that increased levels of CYP2J in the brain can delay the pathological progression of PD initiated by inflammation or neurotoxins. The alteration of the metabolism of the endogenous substrates (e.g., AA) could affect the risk of neurodegenerative disease.


2018 ◽  
Vol 279 ◽  
pp. 111-120 ◽  
Author(s):  
André T.R. Goes ◽  
Cristiano R. Jesse ◽  
Michelle S. Antunes ◽  
Fernando V. Lobo Ladd ◽  
Aliny A.B. Lobo Ladd ◽  
...  

2018 ◽  
Vol 119 (01) ◽  
pp. 22-27 ◽  
Author(s):  
L. Li ◽  
J. Xu ◽  
M. Wu ◽  
J. M. Hu

2022 ◽  
Author(s):  
Min Hyung Seo ◽  
Sujung Yeo

Abstract Parkinson’s disease (PD) is known as the second most common neurodegenerative disease, which is caused by destruction of dopaminergic neurons in the substantia nigra (SN) of the brain; however, the reason for the death of dopaminergic neurons remains unclear. An increase in α-synuclein (α-syn) is considered an important factor in the pathogenesis of PD. In the current study, we investigated the association between PD and serine/arginine-rich protein specific kinase 3 (Srpk3) in MPTP-induced parkinsonism mice model and in SH-SY5Y cells treated with MPP+. Srpk3 expression was significantly downregulated, while tyrosine hydroxylase (TH) decreased and α-synuclein (α-syn) increased after 4 weeks of MPTP intoxication treatment. Dopaminergic cell reduction and α-syn increase were demonstrated by inhibiting Srpk3 expression by siRNA in SH-SY5Y cells. Moreover, a decrease in Srpk3 expression upon siRNA treatment promoted dopaminergic cell reduction and α-syn increase in SH-SY5Y cells treated with MPP+. These results suggest that the decrease in Srpk3 expression due to Srpk3 siRNA caused both a decrease in TH and an increase in α-syn. This raises new possibilities for studying how Srpk3 controls dopaminergic cells and α-syn expression, which may be related to the pathogenesis of PD. Our results provide an avenue for understanding the role of Srpk3 during dopaminergic cell loss and α-syn increase in the SN. Furthermore, this study could support a therapeutic possibility for PD in that the maintenance of Srpk3 expression inhibited dopaminergic cell reduction.


2020 ◽  
Author(s):  
Jie Wang ◽  
Wei-Yan You ◽  
Qing Ye ◽  
Jia-Qi Zhang ◽  
Chuan He ◽  
...  

Abstract Background: Melanoma-associated antigen D1 (Maged1) is expressed in most adult tissues, predominantly in the brain, and has critical functions in the central nervous system in both developmental and adult stages. Loss of Maged1 in mice has been linked to depression, cognitive disorder, circadian rhythm, and drug addiction. However, the role of Maged1 in Parkinson’s disease (PD) remains unclear.Methods: Immunostaining was performed to investigate the expression of Maged1 in the samples from mice and human. To make the acute mice model of PD, C57BL/6 mice and Maged1 knockout mice were injected with 20 mg/kg 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) four times, every 2-hour intervals. SY5Y cells were treated by 200 μM 1-Methyl-4-phenylpyridinium iodide (MPP+). To examine motor balance and coordination, the rotarod test and pole test were used. Then we further investigated the role of Maged1 deficiency in DA neurons by high-performance liquid chromatography, immunohistochemistry, western blot, CCK8 assay, and gene transfection in vivo or in vitro.Results: Maged1 was expressed in DA neurons of samples from mice and human. And the expression of Maged1 was time-dependently upregulated by the treatment with MPTP or MPP+ in vivo or in vitro. Knockout of Maged1 in mice partly rescued the motor deficits and the reduced levels of striatal dopamine and its metabolites by MPTP treatment. Moreover, Maged1 deficiency protected primary DA neurons and differentiated ReNcell VM cells from MPP+ toxicity. Furthermore, along with the overexpression or downregulation of Maged1 in cultured SH-SY5Y cells, the reduced the cell viability by MPP+ treatment was relatively aggerated or attenuated. The effect of Maged1 deficiency may be attributed to the upregulated Akt signaling pathway and the downregulated mTOR signaling pathway, which further attenuated the MPTP or MPP+ -induced cell apoptosis and impairment of autophagy. Consistent with the above data, the degeneration of midbrain and striatum among 15-m Maged1 knockout mice was relatively mild compared to those in 15-m wild-type mice under physiological conditions.Conclusions: Maged1 deficiency-mediated apoptosis inhibition and autophagy enhancement may be a potential pro-survival mechanism during the progression of PD.


2017 ◽  
Vol 90 ◽  
pp. 724-730 ◽  
Author(s):  
Seyed Soheil Saeedi Saravi ◽  
Seyed Sobhan Saeedi Saravi ◽  
Katayoun Khoshbin ◽  
Ahmad Reza Dehpour

Sign in / Sign up

Export Citation Format

Share Document