Transforming growth factor-β1 stimulated protein kinase B serine-473 and focal adhesion kinase tyrosine phosphorylation dependent on cell adhesion in human hepatocellular carcinoma SMMC-7721 cells

2003 ◽  
Vol 312 (2) ◽  
pp. 388-396 ◽  
Author(s):  
Zhen Xu ◽  
Dong-zhu Ma ◽  
Li-ying Wang ◽  
Jian-min Su ◽  
Xi-liang Zha
2020 ◽  
Vol 103 (4) ◽  
pp. 779-790
Author(s):  
Hui Li ◽  
Rui-Qiong Ma ◽  
Hong-Yan Cheng ◽  
Xue Ye ◽  
Hong-Lan Zhu ◽  
...  

Abstract Fibrinogen alpha chain (FGA), a cell adhesion molecule, contains two arginyl-glycyl-aspartic acid (RGD) cell adhesion sequences. Our previous study demonstrated that FGA, as an up-regulated protein in endometriosis (EM), was closely related to disease severity and involved in the development of EM. However, the biological functions and underlying mechanism of FGA in EM have not been fully understood. To explore the roles of FGA in EM, we analyzed the effects of FGA on the biological behaviors of human primary eutopic endometrial stromal cells (EuESC). The results indicated FGA knockdown suppressed the migration and invasion ability of EuESC, which also altered the distribution of cytoskeletal filamentous and cell morphology. Western blot analysis demonstrated that knockdown of FGA attenuated the migration-related protein levels of vimentin and matrix metallopeptidase 2 (MMP-2), but not integrin subunit alpha V (ITGAV) and integrin subunit beta 3 (ITGB3). Meanwhile, integrin-linked transduction pathways were detected. We found FGA knockdown significantly suppressed the expression of focal adhesion kinase (FAK) level and protein kinase B (AKT) phosphorylation, without extracellular-signal-regulated kinase (ERK) dependent pathways. Treatment with the AKT inhibitor MK2206 or RGD antagonist highly decreased the effects of FGA on the migration and invasion of EuESC. RGD antagonist treatment strongly inhibited FAK- and AKT-dependent pathways, but not ERK pathways. Our data indicated that FGA may enhance the migration and invasion of EuESC through RGD sequences binding integrin and activating the FAK/AKT/MMP-2 signaling pathway. This novel finding suggests that FGA may provide a novel potential approach to the treatment of EM, which provides a new way to understand the pathogenesis of EM.


2002 ◽  
Vol 70 (7) ◽  
pp. 3804-3815 ◽  
Author(s):  
Giorgio Santoni ◽  
Roberta Lucciarini ◽  
Consuelo Amantini ◽  
Jordan Jacobelli ◽  
Elisabetta Spreghini ◽  
...  

ABSTRACT The signaling pathways triggered by adherence of Candida albicans to the host cells or extracellular matrix are poorly understood. We provide here evidence in C. albicans yeasts of a p105 focal adhesion kinase (Fak)-like protein (that we termed CaFak), antigenically related to the vertebrate p125Fak, and its involvement in integrin-like-mediated fungus adhesion to vitronectin (VN) and EA.hy 926 human endothelial cell line. Biochemical analysis with different anti-chicken Fak antibodies identified CaFak as a 105-kDa protein and immunofluorescence and cytofluorimetric analysis on permeabilized cells specifically stain C. albicans yeasts; moreover, confocal microscopy evidences CaFak as a cytosolic protein that colocalizes on the membrane with the integrin-like VN receptors upon yeast adhesion to VN. The protein tyrosine kinase (PTK) inhibitors genistein and herbimycin A strongly inhibited C. albicans yeast adhesion to VN and EA.hy 926 endothelial cells. Moreover, engagement of αvβ3 and αvβ5 integrin-like on C. albicans either by specific monoclonal antibodies or upon adhesion to VN or EA.hy 926 endothelial cells stimulates CaFak tyrosine phosphorylation that is blocked by PTK inhibitor. A role for CaFak in C. albicans yeast adhesion was also supported by the failure of VN to stimulate its tyrosine phosphorylation in a C. albicans mutant showing normal levels of CaFak and VNR-like integrins but displaying reduced adhesiveness to VN and EA.hy 926 endothelial cells. Our results suggest that C. albicans Fak-like protein is involved in the control of yeast cell adhesion to VN and endothelial cells.


Sign in / Sign up

Export Citation Format

Share Document