Activin A/Smads signaling pathway negatively regulates Oxygen Glucose Deprivation-induced autophagy via suppression of JNK and p38 MAPK pathways in neuronal PC12 cells

2016 ◽  
Vol 480 (3) ◽  
pp. 355-361 ◽  
Author(s):  
Long-Xing Xue ◽  
Zhong-Hang Xu ◽  
Jiao-Qi Wang ◽  
Yang Cui ◽  
Hong-Yu Liu ◽  
...  
2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Xu Zhang ◽  
Xiaojun Fei ◽  
Weiwei Tao ◽  
Jingbo Li ◽  
Hao Shen ◽  
...  

Modified Xijiao Dihuang (XJDH) decoction has been shown to exert powerful neuroprotective properties in clinical ischemic stroke treatment. It consists of 4 Chinese herbs: Buffalo Horn, Paeonia suffruticosa Andrews, Rehmannia glutinosa (Gaertn.) DC, and Paeonia lactiflora Pall. In the present study, the neuroprotective effect and specific mechanisms of XJDH in protecting PC12 cells from oxygen-glucose deprivation-induced injury were investigated. It was found that OGD/R significantly decreased the cell viability and lactate dehydrogenase (LDH) activity and increased the release of IL-1β, IL-6, and TNF-α in PC12 cells, and these effects were suppressed by XJDH and one of its major active constituents, paeoniflorin. Additionally, XJDH inhibited caspase-3 activity and reduced cleaved caspase-3 level. Mechanistic studies showed that the expressions of TLR4, MyD88, TRAF6, and NF-κB p65 and phosphorylation of IκBα and p65 were significantly lower in the XJDH-treated group than in the OGD/R control group. Additionally, XJDH reversed the OGD/R-induced increases in p-JNK and p-ERK1/2 expression. These results suggest that XJDH protects PC12 cells from oxygen-glucose deprivation-induced injury, which may be associated with the inhibition of the TLR4-MyD88/NF-κB signaling pathway. As an anti-inflammation factor, XJDH might be used as a neuronal protection strategy for the ischemia injury and related diseases.


2021 ◽  
Vol 18 (10) ◽  
pp. 2037-2043
Author(s):  
Hong Zhu ◽  
Dan Ren ◽  
Lan Xiao ◽  
Ting Zhang ◽  
Ruomeng Li ◽  
...  

Purpose: To investigate whether the cytoprotective effect of anthocyanin (Anc) on oxygen-glucose deprivation/reperfusion (OGD/R)-induced cell injury is related to apoptosis signal-regulating kinase 1 (ASK1)/c-Jun N-terminal kinase (JNK)/p38 signaling pathway. Methods: PC12 cells were pre-treated with various concentrations of Anc (10, 50, and 100 μg/mL) in OGD/R-induced cell injury model. The 3-(4, 5)-dimethylthiahiazo (-z-y1)-3, 5-di-phenytetrazoliumromide (MTT) assay was used to assess cell viability. Cell apoptosis was measured by lactic acid dehydrogenase (LDH) release assay and flow cytometry. Western blot was employed to determine the protein expressions of BCL-2, BAX, caspase-3, p-ASK1 (Thr845), p-JNK, and p-p38. Results: The results indicate that Anc increased the viability of PC12 cells after OGD/R exposure (p < 0.05), and also efficiently rescued OGD/R-induced apoptosis (p < 0.05). Mechanistic studies showed that these protective roles of Anc are related to the inhibition of ASK1/JNK/p38 signaling pathway. Conclusion: The results indicate Anc protects against OGD/R-induced cell injury by enhancing cell viability and inhibiting cell apoptosis. The underlying mechanism of action is partly via inactivation of ASK1/JNK/p38 signaling pathway. Thus, Anc has promise as a potential natural agent to prevent and treat cerebral ischemia-reperfusion injury.


Molecules ◽  
2011 ◽  
Vol 17 (1) ◽  
pp. 315-327 ◽  
Author(s):  
Jin-Ting He ◽  
Jing Mang ◽  
Chun-Li Mei ◽  
Le Yang ◽  
Jiao-Qi Wang ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Aihua Qi ◽  
Yiyun Cao ◽  
Aizhong Wang

Ketamine and propofol are commonly used anaesthetic reagents. Recent research revealed that ketamine and propofol have an important role in cell survival. However, it remains unknown whether they affect the outcome of hypoxic-ischemic brain injury. To address this issue, we in this study investigated the effects of ketamine and propofol on the survival and proliferation of neuronal PC12 cells after exposure to oxygen-glucose deprivation- (OGD-) induced injury. PC12 cells were maintained under a 3-dimensional (3D) culture system to mimic a real physiological microenvironment. The cell injury was induced by 5% CO2 and 95% N2 for a different time point. MTT assay was used for the cell proliferation assay. The cell apoptosis was evaluated by annexin V and propidium iodide (PI) labeling, immunofluorescence staining, transmission electron microscopy (TEM), flow cytometry, and Western blot, respectively. Our results showed that PC12 cell apoptosis was significantly increased for up to 70% after the cells were treated with OGD for 24 hours and reduced to baseline at the 72-hour time point. However, pretreatment with ketamine and propofol significantly protected the cells from OGD-induced cell apoptosis, as evidenced by more expression of antiapoptotic Bcl-2 and lower expression of proapoptotic cleaved caspase-3, phosphor-SAPK/JNK, and phosphor-c-Jun than those of untreated control cells. Thus, we conclude that ketamine and propofol protected PC12 cells from OGD-induced cell apoptosis, at least partially through the SAPK/JNK signalling pathway.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Yongliang Huang ◽  
Jie Yu ◽  
Fang Wan ◽  
Wenwu Zhang ◽  
Huarong Yang ◽  
...  

Panaxatriol saponins (PTS), the main components extracted fromPanax notoginseng, have been shown to be efficacious in the prevention and treatment of cerebrovascular diseases in China. NF-E2-related factor 2 (Nrf2), a transcription factor regulating antioxidant and cytoprotective responses to oxidative stress, has received particular attention as a molecular target for pharmacological intervention of ischemic diseases. The aim of this study was to characterize the effect of PTS on the activation of Nrf2 signaling pathway and the potential role in its protective effect. We found that PTS induced heme oxygenase-1 (HO-1) expression in PC12 cells via activating Nrf2 signaling pathway. Phosphatidylinositol 3-kinase (PI3K)/Akt kinase was involved in the upstream of this PTS activated pathway. Moreover, combination of the main components in PTS significantly enhanced the expression of Nrf2 mediated phase II enzymes. Importantly, the protective effect of PTS against oxygen-glucose deprivation-reperfusion (OGD-Rep) induced cell death was significantly attenuated by PI3K inhibitor and antioxidant response element (ARE) decoy oligonucleotides, suggesting that both PI3K/Akt and Nrf2 signaling pathway are essential during this protective process. Taken together, our results suggest that PTS may activate endogenous cytoprotective mechanism against OGD-Rep induced oxidative injury via the activation of PI3K/Akt and Nrf2 signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document