Effect of tamoxifen on the sphingolipid biosynthetic pathway in the different intraerythrocytic stages of the apicomplexa Plasmodium falciparum

2018 ◽  
Vol 497 (4) ◽  
pp. 1082-1088 ◽  
Author(s):  
Tamara A. Piñero ◽  
Malena Landoni ◽  
Vilma G. Duschak ◽  
Alejandro M. Katzin ◽  
Alicia S. Couto
Blood ◽  
1990 ◽  
Vol 75 (8) ◽  
pp. 1705-1710 ◽  
Author(s):  
CR Zerez ◽  
EF Jr Roth ◽  
S Schulman ◽  
KR Tanaka

Abstract Plasmodium falciparum-infected red blood cells (RBCs) are characterized by increases in the activity of glycolytic enzymes. Because nicotinamide adenine dinucleotide (NAD) and NAD phosphate (NADP) are cofactors in the reactions of glycolysis and pentose phosphate shunt, we have examined NAD and NADP content in P. falciparum-infected RBCs. Although NADP content was not significantly altered, NAD content was increased approximately 10-fold in infected RBCs (66% parasitemia) compared with uninfected control RBCs. To determine the mechanism for the increase in NAD content, we examined the activity of several NAD biosynthetic enzymes. It is known that normal human RBCs make NAD exclusively from nicotinic acid and lack the capacity to make NAD from nicotinamide. We demonstrate that infected RBCs have readily detectable nicotinamide phosphoribosyltransferase (NPRT), the first enzyme in the NAD biosynthetic pathway that uses nicotinamide, and abundant nicotinamide deamidase, the enzyme that converts nicotinamide to nicotinic acid, thereby indicating that infected RBCs can make NAD from nicotinamide. In addition, infected RBCs have a threefold increase in nicotinic acid phosphoribosyltransferase (NAPRT), the first enzyme in the NAD biosynthetic pathway that uses nicotinic acid. Thus, the increase in NAD content in P falciparum-infected RBCs appears to be mediated by increases in NAD synthesis from both nicotinic acid and nicotinamide.


2009 ◽  
Vol 39 (5) ◽  
pp. 559-568 ◽  
Author(s):  
Viswanathan Arun Nagaraj ◽  
Rajavel Arumugam ◽  
Nagasuma R. Chandra ◽  
Dasari Prasad ◽  
Pundi N. Rangarajan ◽  
...  

2021 ◽  
Author(s):  
Alan F. Scott ◽  
Evelyne Deery ◽  
Andrew D. Lawrence ◽  
Martin J. Warren

AbstractThe production of uroporphyrinogen III, the universal progenitor of macrocyclic, modified tetrapyrroles, is produced from aminolaevulinic acid (ALA) by a conserved pathway involving three enzymes: porphobilinogen synthase (PBGS), hydroxymethylbilane synthase (HmbS) and uroporphyrinogen III synthase (UroS). The gene encoding uroporphyrinogen III synthase has not yet been identified in Plasmodium falciparum but it has been suggested that this activity is housed inside a bifunctional hybroxymethylbilane synthase (HmbS). In this present study it is demonstrated that P. falciparum HmbS does not have uroporphyrinogen III synthase activity. This was demonstrated by the failure of a codon optimised P. falciparum hemC gene, encoding HmbS, to compliment a defined E. coli hemD- mutant (SASZ31) deficient in uroporphyrinogen III synthase activity. Furthermore, HPLC analysis of the oxidsed reaction product from recombinant, purified HmbS showed that only uroporphyrin I could be detected (corresponding to hydroxymethylbilane production). No uroporphyrin III was detected, thus showing that P. falciparum HmbS does not have UroS activity and can only catalyse the formation of hydroxymethylbilane from porphobilinogen.


Microbiology ◽  
2021 ◽  
Vol 167 (10) ◽  
Author(s):  
Alan F. Scott ◽  
Evelyne Deery ◽  
Andrew D. Lawrence ◽  
Martin J. Warren

Uroporphyrinogen III, the universal progenitor of macrocyclic, modified tetrapyrroles, is produced from aminolaevulinic acid (ALA) by a conserved pathway involving three enzymes: porphobilinogen synthase (PBGS), hydroxymethylbilane synthase (HmbS) and uroporphyrinogen III synthase (UroS). The gene encoding uroporphyrinogen III synthase has not yet been identified in Plasmodium falciparum, but it has been suggested that this activity is housed inside a bifunctional hybroxymethylbilane synthase (HmbS). Additionally, an unknown protein encoded by PF3D7_1247600 has also been predicted to possess UroS activity. In this study it is demonstrated that neither of these proteins possess UroS activity and the real UroS remains to be identified. This was demonstrated by the failure of codon-optimized genes to complement a defined Escherichia coli hemD − mutant (SASZ31) deficient in UroS activity. Furthermore, HPLC analysis of the oxidized reaction product from recombinant, purified P. falciparum HmbS showed that only uroporphyrin I could be detected (corresponding to hydroxymethylbilane production). No uroporphyrin III was detected, showing that P. falciparum HmbS does not have UroS activity and can only catalyze the formation of hydroxymethylbilane from porphobilinogen.


2005 ◽  
Vol 33 (4) ◽  
pp. 785-791 ◽  
Author(s):  
F. Rohdich ◽  
A. Bacher ◽  
W. Eisenreich

IPP (isopentenyl diphosphate) and DMAPP (dimethylallyl diphosphate) serve as the universal precursors for the biosynthesis of isoprenoids. Besides the well-known mevalonate pathway, the existence of a second biosynthetic pathway conducive to IPP and DMAPP formation through 1-deoxy-D-xylulose 5-phosphate and 2C-methyl-D-erythritol 4-phosphate was discovered approx. 10 years ago in plants and certain eubacteria. It is now known that this pathway is widely distributed in the bacterial kingdom including major human pathogens, such as Mycobacterium tuberculosis and Helicobacter pylori. The pathway is also essential in the malaria vector Plasmodium falciparum. During the last few years, the genes, enzymes, intermediates and mechanisms of the biosynthetic route have been elucidated by a combination of comparative genomics, enzymology, advanced NMR technology and crystallography. The results provide the basis for the development of novel anti-infective drugs.


2002 ◽  
Vol 70 (8) ◽  
pp. 4510-4522 ◽  
Author(s):  
Mauro Delorenzi ◽  
Adrienne Sexton ◽  
Hosam Shams-Eldin ◽  
Ralph T. Schwarz ◽  
Terry Speed ◽  
...  

ABSTRACT About 2.5 million people die of Plasmodium falciparum malaria every year. Fatalities are associated with systemic and organ-specific inflammation initiated by a parasite toxin. Recent studies show that glycosylphosphatidylinositol (GPI) functions as the dominant parasite toxin in the context of infection. GPIs also serve as membrane anchors for several of the most important surface antigens of parasite invasive stages. GPI anchoring is a complex posttranslational modification produced through the coordinated action of a multicomponent biosynthetic pathway. Here we present eight new genes of P. falciparum selected for encoding homologs of proteins essential for GPI synthesis: PIG-A, PIG-B, PIG-M, PIG-O, GPI1, GPI8, GAA-1, and DPM1. We describe the experimentally verified mRNA and predicted amino acid sequences and in situ localization of the gene products to the parasite endoplasmic reticulum. Moreover, we show preliminary evidence for the PIG-L and PIG-C genes. The biosynthetic pathway of the malaria parasite GPI offers potential targets for drug development and may be useful for studying parasite cell biology and the molecular basis for the pathophysiology of parasitic diseases.


1999 ◽  
Vol 344 (3) ◽  
pp. 731-738 ◽  
Author(s):  
Peter GEROLD ◽  
Nicole JUNG ◽  
Nahid AZZOUZ ◽  
Nicole FREIBERG ◽  
Sabine KOBE ◽  
...  

The structures of glycosylphosphatidylinositols (GPIs) in Plasmodium have been described [Gerold, Schuppert and Schwarz (1994) J. Biol. Chem. 269, 2597-2606]. A detailed understanding of GPI synthesis in Plasmodium is a prerequisite for identifying differences present in biosynthetic pathways of parasites and host cells. A comparison of the biosynthetic pathway of GPIs has revealed differences between mammalian cells and parasitic protozoans. A cell-free incubation system prepared from asexual erythrocytic stages of Plasmodium falciparum, the causative agent of malaria in humans, is capable of synthesizing the same spectrum of GPIs as that found in metabolically labelled parasites. The formation of mannosylated GPIs in the cell-free system is shown to be inhibited by GTP and, unexpectedly, micromolar concentrations of GDP-Man. Lower concentrations of GDP-Man affect the spectrum of GPIs synthesized. The inositol ring of GPIs of P. falciparum is modified by an acyl group. The preferred donor of this fatty acid at the inositol ring is myristoyl-CoA. Inositol acylation has to precede the mannosylation of GPIs because, in the absence of acyl-CoA or CoA, mannosylated GPIs were not detected. Inositol myristoylation is a unique feature of plasmodial GPIs and thus might provide a potential target for drug therapy.


2020 ◽  
Vol 73 (3) ◽  
pp. 129
Author(s):  
Desmond C.-M. Sim ◽  
Natasha L. Hungerford ◽  
Elizabeth H. Krenske ◽  
Gregory K. Pierens ◽  
Katherine T. Andrews ◽  
...  

The sesquiterpene isonitrile, 9-isocyanoneoallopupukeanane 1, has been obtained from the Indo-Pacific nudibranch Phyllidiella pustulosa. The structure of 1, which was investigated by extensive NMR experiments, molecular modelling studies, and density functional calculations, has a different arrangement of the tricyclic ring system compared with other isonitrile metabolites isolated from nudibranchs or sponges. The viability of a biosynthetic pathway leading to 1, proposed to involve a series of carbocation rearrangements, is explored in a computational study. Isonitrile 1 exhibited micromolar antimalarial activity when screened against Plasmodium falciparum infected erythrocytes.


Sign in / Sign up

Export Citation Format

Share Document