RETRACTED: The retinoic acid receptor/CaMKII interaction: Pharmacologic inhibition of CaMKII enhances the differentiation of myeloid leukemia cells

2007 ◽  
Vol 39 (3) ◽  
pp. 307-315 ◽  
Author(s):  
Jutong Si ◽  
LeMoyne Mueller ◽  
Aaron Schuler ◽  
Julian Simon ◽  
Steven J. Collins
2021 ◽  
Vol 12 ◽  
pp. 204062072097698
Author(s):  
Xiaoyan Han ◽  
Chunxiang Jin ◽  
Gaofeng Zheng ◽  
Yi Li ◽  
Yungui Wang ◽  
...  

Some subtypes of acute myeloid leukemia (AML) share morphologic, immunophenotypic, and clinical features of acute promyelocytic leukemia (APL), but lack a PML–RARA (promyelocytic leukemia–retinoic acid receptor alpha) fusion gene. Instead, they have the retinoic acid receptor beta (RARB) or retinoic acid receptor gamma (RARG) rearranged. Almost all of these AML subtypes exhibit resistance to all-trans retinoic acid (ATRA); undoubtedly, the prognosis is poor. Here, we present an AML patient resembling APL with a novel cleavage and polyadenylation specific factor 6 ( CPSF6) –RARG fusion, showing resistance to ATRA and poor response to chemotherapy with homoharringtonine and cytarabine. Simultaneously, the patient also had extramedullary infiltration.


Blood ◽  
2000 ◽  
Vol 96 (10) ◽  
pp. 3529-3536 ◽  
Author(s):  
Hui Wang ◽  
Xuan Zheng ◽  
Frederick G. Behm ◽  
Manohar Ratnam

Abstract Folate receptor (FR) type β is expressed in the myelomonocytic lineage, predominantly during neutrophil maturation and in myeloid leukemias. FR-β expression was elevated up to 20-fold by all-trans retinoic acid (ATRA) in KG-1 myeloid leukemia cells in a dose-dependent and reversible manner in the absence of terminal differentiation or cell growth inhibition. ATRA also increased FR-β expression in vitro in myeloid leukemia cells from patient marrow. FR-β was not up-regulated in KG-1 cells treated with phorbol ester, dexamethasone, 1,25-dihydroxy vitamin D3, or transforming growth factor β. ATRA did not induce FR-β expression in receptor negative cells of diverse origin. The ATRA-induced increase in FR-β expression in KG-1 cells occurred at the level of messenger RNA synthesis, and in 293 cells containing a stably integrated FR-β promoter–luciferase reporter construct, ATRA induced expression of the reporter. From experiments using retinoid agonists and antagonists and from cotransfection studies using the FR-β promoter and expression plasmids for the nuclear receptors retinoic acid receptor (RAR)α, RARβ, or RARγ, it appears that the retinoid effect on FR-β expression could be mediated by ligand binding to RARs α, β, or γ, but not to retinoid X receptors. Furthermore, there was apparent cross-talk between RARα and RARγ selective agonists or antagonists, suggesting a common downstream target for RAR isoforms in inducing FR-β expression. Thus, blocks in the RARα-specific pathway of retinoid-induced differentiation may be bypassed during retinoid induction of FR-β expression. The results suggest that to facilitate FR-targeted therapies, retinoids may be used to modulate FR-β expression in myeloid leukemia cells refractory to retinoid differentiation therapy.


Blood ◽  
1989 ◽  
Vol 74 (1) ◽  
pp. 99-102 ◽  
Author(s):  
C Largman ◽  
K Detmer ◽  
JC Corral ◽  
FM Hack ◽  
HJ Lawrence

The expression of the newly described human retinoic acid receptor alpha (RAR alpha) in six nonlymphoid and six lymphoid leukemia cell lines and nine freshly obtained samples of leukemia cells from patients with acute nonlymphoid leukemia was assessed by Northern blot analysis, using a full length cDNA clone of RAR alpha as probe. RAR alpha was expressed in all 12 cell lines and in all fresh leukemia samples as two major transcripts of 2.6 and 3.5 kb in size. Levels of RAR alpha expression and transcript sizes in retinoid-sensitive cells (such as HL60 or fresh promyelocytic leukemia cells) were not different from those in other samples. Moreover, expression of RAR alpha was not significantly modulated by exposure to cis-retinoic acid (cisRA) in either cisRA-responsive or unresponsive cells. By using a 3′ fragment of the RAR alpha gene as a probe, we confirmed that the transcripts visualized did not represent the homologous RAR beta gene. RAR alpha appears to be expressed in most human leukemia cells regardless of the type of biologic response to retinoic acid.


Blood ◽  
2000 ◽  
Vol 96 (10) ◽  
pp. 3529-3536 ◽  
Author(s):  
Hui Wang ◽  
Xuan Zheng ◽  
Frederick G. Behm ◽  
Manohar Ratnam

Folate receptor (FR) type β is expressed in the myelomonocytic lineage, predominantly during neutrophil maturation and in myeloid leukemias. FR-β expression was elevated up to 20-fold by all-trans retinoic acid (ATRA) in KG-1 myeloid leukemia cells in a dose-dependent and reversible manner in the absence of terminal differentiation or cell growth inhibition. ATRA also increased FR-β expression in vitro in myeloid leukemia cells from patient marrow. FR-β was not up-regulated in KG-1 cells treated with phorbol ester, dexamethasone, 1,25-dihydroxy vitamin D3, or transforming growth factor β. ATRA did not induce FR-β expression in receptor negative cells of diverse origin. The ATRA-induced increase in FR-β expression in KG-1 cells occurred at the level of messenger RNA synthesis, and in 293 cells containing a stably integrated FR-β promoter–luciferase reporter construct, ATRA induced expression of the reporter. From experiments using retinoid agonists and antagonists and from cotransfection studies using the FR-β promoter and expression plasmids for the nuclear receptors retinoic acid receptor (RAR)α, RARβ, or RARγ, it appears that the retinoid effect on FR-β expression could be mediated by ligand binding to RARs α, β, or γ, but not to retinoid X receptors. Furthermore, there was apparent cross-talk between RARα and RARγ selective agonists or antagonists, suggesting a common downstream target for RAR isoforms in inducing FR-β expression. Thus, blocks in the RARα-specific pathway of retinoid-induced differentiation may be bypassed during retinoid induction of FR-β expression. The results suggest that to facilitate FR-targeted therapies, retinoids may be used to modulate FR-β expression in myeloid leukemia cells refractory to retinoid differentiation therapy.


2003 ◽  
Vol 23 (13) ◽  
pp. 4573-4585 ◽  
Author(s):  
Vernon T. Phan ◽  
David B. Shultz ◽  
Bao-Tran H. Truong ◽  
Timothy J. Blake ◽  
Anna L. Brown ◽  
...  

ABSTRACT We utilized a mouse model of acute promyelocytic leukemia (APL) to investigate how aberrant activation of cytokine signaling pathways interacts with chimeric transcription factors to generate acute myeloid leukemia. Expression in mice of the APL-associated fusion, PML-RARA, initially has only modest effects on myelopoiesis. Whereas treatment of control animals with interleukin-3 (IL-3) resulted in expanded myelopoiesis without a block in differentiation, PML-RARA abrogated differentiation that normally characterizes the response to IL-3. Retroviral transduction of bone marrow with an IL-3-expressing retrovirus revealed that IL-3 and promyelocytic leukemia-retinoic acid receptor alpha (PML-RARα) combined to generate a lethal leukemia-like syndrome in <21 days. We also observed that a constitutively activated mutant IL-3 receptor, βcV449E, cooperated with PML-RARα in leukemogenesis, whereas a different activated mutant, βcI374N, did not. Analysis of additional mutations introduced into βcV449E showed that, although tyrosine phosphorylation of βc is necessary for cooperation, the Src homology 2 domain-containing transforming protein binding site is dispensable. Our results indicate that chimeric transcription factors can block the differentiative effects of growth factors. This combination can be potently leukemogenic, but the particular manner in which these types of mutations interact determines the ability of such combinations to generate acute myeloid leukemia.


Sign in / Sign up

Export Citation Format

Share Document