The synergism of manganese peroxidase and laccase from Cerrena unicolor BBP6 in denim dye decolorization and the construction of gene co-expression system in Pichia pastoris

2021 ◽  
pp. 108230
Author(s):  
Hao Zhang ◽  
Fengjie Sun ◽  
Chunxiao Meng ◽  
Anli Geng ◽  
Zhengquan Gao
Author(s):  
Rafid A. Abdulkareem

The main goal of the current study was cloning and expression of the human insulin gene in Pichia pastoris expression system, using genetic engineering techniques and its treatment application. Total RNA was purified from fresh normal human pancreatic tissue. RNA of good quality was chosen to obtain a first single strand cDNA. Human preproinsulin gene was amplified from cDNA strand, by using two sets of specific primers contain EcoR1 and Notl restriction sites. The amplified preproinsulin gene fragment was double digested with EcoRI and Not 1 restriction enzymes, then inserted into pPIC9K expression vector. The new pPIC9K-hpi constructive expression vector was transformed by the heat-shock method into the E.coli DH5α competent cells. pPic9k –hpi, which was propagated in the positive transformant E. coli cells, was isolated from cells and then linearised by restriction enzyme SalI, then transformed into Pichia pastoris GS115 using electroporation method. Genomic DNA of His+ transformants cell was extracted and used as a template for PCR analysis. The results showed, that the pPic9k – hpi was successfully integrated into the P. pastoris genome, for selected His+ transformants clones on the anticipated band at 330 bp, which is corresponded to the theoretical molecular size of the human insulin gene. To follow the insulin expression in transformans, Tricine–SDS gel electrophoresis and Western blot analysis were conducted. The results showed a successful expression of recombinant protein was detected by the presence of a single major band with about (5.8 KDa) on the gel. These bands correspond well with the size of human insulin with the theoretical molecular weight (5.8 KDa).


1995 ◽  
Vol 73 (S1) ◽  
pp. 891-897 ◽  
Author(s):  
James M. Cregg ◽  
David R. Higgins

The methanol-utilizing yeast Pichia pastoris has been developed as a host system for the production of heterologous proteins of commercial interest. An industrial yeast selected for efficient growth on methanol for biomass generation, P. pastoris is readily grown on defined medium in continuous culture at high volume and density. A unique feature of the expression system is the promoter employed to drive heterologous gene expression, which is derived from the methanol-regulated alcohol oxidase I gene (AOX1) of P. pastoris, one of the most efficient and tightly regulated promoters known. The strength of the AOX1 promoter results in high expression levels in strains harboring only a single integrated copy of a foreign-gene expression cassette. Levels may often be further enhanced through the integration of multiple cassette copies into the P. pastoris genome and strategies to construct and select multicopy cassette strains have been devised. The system is particularly attractive for the secretion of foreign-gene products. Because P. pastoris endogenous protein secretion levels are low, foreign secreted proteins often appear to be virtually the only proteins in the culture broth, a major advantage in processing and purification. Key words: heterologous gene expression, methylotrophic yeast, Pichia pastoris, secretion, glycosylation.


PLoS ONE ◽  
2018 ◽  
Vol 13 (8) ◽  
pp. e0202440 ◽  
Author(s):  
Ji Zhang ◽  
Lei Sun ◽  
Hao Zhang ◽  
Shufang Wang ◽  
Xiaoyu Zhang ◽  
...  

2006 ◽  
Vol 395 (2) ◽  
pp. 295-301 ◽  
Author(s):  
Chiara Ciaccio ◽  
Alessandra Gambacurta ◽  
Giampiero DE Sanctis ◽  
Domenico Spagnolo ◽  
Christina Sakarikou ◽  
...  

A Pichia pastoris expression system has for the first time been successfully developed to produce rhEPO (recombinant human eosinophil peroxidase). The full-length rhEPO coding sequence was cloned into the pPIC9 vector in frame with the yeast α-Factor secretion signal under the transcriptional control of the AOX (acyl-CoA oxidase) promoter, and transformed into P. pastoris strain GS115. Evidence for the production of rhEPO by P. pastoris as a glycosylated dimer precursor of approx. 80 kDa was determined by SDS/PAGE and gel filtration chromatography. Recombinant hEPO undergoes proteolytic processing, similar to that in the native host, to generate two chains of approx. 50 and 20 kDa. A preliminary biochemical characterization of purified rhEPO demonstrated that the spectral and kinetic properties of the recombinant wild-type EPO are comparable with those of the native enzyme and are accompanied by oxidizing activity towards several physiological anionic substrates such as SCN−, Br− and Cl−. On the basis of the estimated Km and kcat values it is evident that the pseudohalide SCN− is the most specific substrate for rhEPO, consistent with the catalytic properties of other mammalian EPOs purified from blood.


2004 ◽  
Vol 44 (supplement) ◽  
pp. S30
Author(s):  
D. Akieda ◽  
T. Aizawa ◽  
M. Yasui ◽  
Y. Nonaka ◽  
M. Watanabe ◽  
...  

2020 ◽  
Vol 22 (1) ◽  
Author(s):  
Roghayyeh Baghban ◽  
Safar Farajnia ◽  
Younes Ghasemi ◽  
Reyhaneh Hoseinpoor ◽  
Azam Safary ◽  
...  

Abstract Background Ocriplasmin (Jetrea) is using for the treatment of symptomatic vitreomacular adhesion. This enzyme undergoes rapid inactivation and limited activity duration as a result of its autolytic nature after injection within the eye. Moreover, the proteolytic activity can cause photoreceptor damage, which may result in visual impairment in more serious cases. Results The present research aimed to reduce the disadvantages of ocriplasmin using site-directed mutagenesis. To reduce the autolytic activity of ocriplasmin in the first variant, lysine 156 changed to glutamic acid and, in the second variant for the proteolytic activity reduction, alanine 59 mutated to threonine. The third variant contained both mutations. Expression of wild type and three mutant variants of ocriplasmin constructs were done in the Pichia pastoris expression system. The mutant variants were analyzed in silico and in vitro and compared to the wild type. The kinetic parameters of ocriplasmin variants showed both variants with K156E substitution were more resistant to autolytic degradation than wild-type. These variants also exhibited reduced Kcat and Vmax values. An increase in their Km values, leading to a decreased catalytic efficiency (the Kcat/Km ratio) of autolytic and mixed variants. Moreover, in the variant with A59T mutation, Kcat and Vmax values have reduced compared to wild type. The mix variants showed the most increase in Km value (almost 2-fold) as well as reduced enzymatic affinity to the substrate. Thus, the results indicated that combined mutations at the ocriplasmin sequence were more effective compared with single mutations. Conclusions The results indicated such variants represent valuable tools for the investigation of therapeutic strategies aiming at the non-surgical resolution of vitreomacular adhesion.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5538
Author(s):  
Zhongxuan Li ◽  
Qiang Cheng ◽  
Henan Guo ◽  
Rijun Zhang ◽  
Dayong Si

EF-1 is a novel peptide derived from two bacteriocins, plantaricin E and plantaricin F. It has a strong antibacterial activity against Escherichia coli and with negligible hemolytic effect on red blood cells. However, the chemical synthesis of EF-1 is limited by its high cost. In this study, we established a heterologous expression of EF-1 in Pichia pastoris. The transgenic strain successfully expressed hybrid EF-1 peptide, which had a molecular weight of ~5 kDa as expected. The recombinant EF-1 was purified by Ni2+ affinity chromatography and reversed-phase high performance liquid chromatography (RP-HPLC), which achieved a yield of 32.65 mg/L with a purity of 94.9%. The purified EF-1 exhibited strong antimicrobial and bactericidal activities against both Gram-positive and -negative bacteria. Furthermore, propidium iodide staining and scanning electron microscopy revealed that EF-1 can directly induce cell membrane permeabilization of E. coli. Therefore, the hybrid EF-1 not only preserves the individual properties of the parent peptides, but also acquires the ability to disrupt Gram-negative bacterial membrane. Meanwhile, such an expression system can reduce both the time and cost for large-scale peptide production, which ensures its potential application at the industrial level.


Sign in / Sign up

Export Citation Format

Share Document