Long-term early life adverse experience impairs responsiveness to exteroceptive stimuli in adult rats

2018 ◽  
Vol 149 ◽  
pp. 59-64 ◽  
Author(s):  
Anna Holubová ◽  
Anna Mikulecká ◽  
Marie Pometlová ◽  
Kateryna Nohejlová ◽  
Romana Šlamberová
Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4527
Author(s):  
Shirelle X. Liu ◽  
Amanda K. Barks ◽  
Scott Lunos ◽  
Jonathan C. Gewirtz ◽  
Michael K. Georgieff ◽  
...  

Early-life iron deficiency (ID) causes long-term neurocognitive impairments and gene dysregulation that can be partially mitigated by prenatal choline supplementation. The long-term gene dysregulation is hypothesized to underlie cognitive dysfunction. However, mechanisms by which iron and choline mediate long-term gene dysregulation remain unknown. In the present study, using a well-established rat model of fetal-neonatal ID, we demonstrated that ID downregulated hippocampal expression of the gene encoding JmjC-ARID domain-containing protein 1B (JARID1B), an iron-dependent histone H3K4 demethylase, associated with a higher histone deacetylase 1 (HDAC1) enrichment and a lower enrichment of acetylated histone H3K9 (H3K9ac) and phosphorylated cAMP response element-binding protein (pCREB). Likewise, ID reduced transcriptional capacity of the gene encoding brain-derived neurotrophic factor (BDNF), a target of JARID1B, associated with repressive histone modifications such as lower H3K9ac and pCREB enrichments at the Bdnf promoters in the adult rat hippocampus. Prenatal choline supplementation did not prevent the ID-induced chromatin modifications at these loci but induced long-lasting repressive chromatin modifications in the iron-sufficient adult rats. Collectively, these findings demonstrated that the iron-dependent epigenetic mechanism mediated by JARID1B accounted for long-term Bdnf dysregulation by early-life ID. Choline supplementation utilized a separate mechanism to rescue the effect of ID on neural gene regulation. The negative epigenetic effects of choline supplementation in the iron-sufficient rat hippocampus necessitate additional investigations prior to its use as an adjunctive therapeutic agent.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Lu-jing Chen ◽  
Bing-qing Shen ◽  
Dan-dan Liu ◽  
Sheng-tian Li

Childhood emotional trauma contributes significantly to certain psychopathologies, such as post-traumatic stress disorder. In experimental animals, however, whether or not early-life stress results in behavioral abnormalities in adult animals still remains controversial. Here, we investigated both short-term and long-term changes of anxiety- and depression-like behaviors of Wistar rats after being exposed to chronic feral cat stress in juvenile ages. The 2-week predator stress decreased spontaneous activities immediately following stress but did not increase depression- or anxiety-like behaviors 4 weeks after the stimulation in adulthood. Instead, juvenile predator stress had some protective effects, though not very obvious, in adulthood. We also exposed genetic depression model rats, Wistar Kyoto (WKY) rats, to the same predator stress. In WKY rats, the same early-life predator stress did not enhance anxiety- or depression-like behaviors in both the short-term and long-term. However, the stressed WKY rats showed slightly reduced depression-like behaviors in adulthood. These results indicate that in both normal Wistar rats and WKY rats, early-life predator stress led to protective, rather than negative, effects in adulthood.


2019 ◽  
Vol 133 (1) ◽  
pp. 50-58 ◽  
Author(s):  
Nathalie D. Elliott ◽  
Rick Richardson

Author(s):  
Maria Fitzgerald ◽  
Michael W. Salter

The influence of development and sex on pain perception has long been recognized but only recently has it become clear that this is due to specific differences in underlying pain neurobiology. This chapter summarizes the evidence for mechanistic differences in male and female pain biology and for functional changes in pain pathways through infancy, adolescence, and adulthood. It describes how both developmental age and sex determine peripheral nociception, spinal and brainstem processing, brain networks, and neuroimmune pathways in pain. Finally, the chapter discusses emerging evidence for interactions between sex and development and the importance of sex in the short- and long-term effects of early life pain.


2021 ◽  
Vol 169 ◽  
pp. 128-135
Author(s):  
Hossein Masrouri ◽  
Maryam Azadi ◽  
Saeed Semnanian ◽  
Hossein Azizi

SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A11-A12
Author(s):  
Carolyn Jones ◽  
Randall Olson ◽  
Alex Chau ◽  
Peyton Wickham ◽  
Ryan Leriche ◽  
...  

Abstract Introduction Glutamate concentrations in the cortex fluctuate with the sleep wake cycle in both rodents and humans. Altered glutamatergic signaling, as well as the early life onset of sleep disturbances have been implicated in neurodevelopmental disorders such as autism spectrum disorder. In order to study how sleep modulates glutamate activity in brain regions relevant to social behavior and development, we disrupted sleep in the socially monogamous prairie vole (Microtus ochrogaster) rodent species and quantified markers of glutamate neurotransmission within the prefrontal cortex, an area of the brain responsible for advanced cognition and complex social behaviors. Methods Male and female prairie voles were sleep disrupted using an orbital shaker to deliver automated gentle cage agitation at continuous intervals. Sleep was measured using EEG/EMG signals and paired with real time glutamate concentrations in the prefrontal cortex using an amperometric glutamate biosensor. This same method of sleep disruption was applied early in development (postnatal days 14–21) and the long term effects on brain development were quantified by examining glutamatergic synapses in adulthood. Results Consistent with previous research in rats, glutamate concentration in the prefrontal cortex increased during periods of wake in the prairie vole. Sleep disruption using the orbital shaker method resulted in brief cortical arousals and reduced time in REM sleep. When applied during development, early life sleep disruption resulted in long-term changes in both pre- and post-synaptic components of glutamatergic synapses in the prairie vole prefrontal cortex including increased density of immature spines. Conclusion In the prairie vole rodent model, sleep disruption on an orbital shaker produces a sleep, behavioral, and neurological phenotype that mirrors aspects of autism spectrum disorder including altered features of excitatory neurotransmission within the prefrontal cortex. Studies using this method of sleep disruption combined with real time biosensors for excitatory neurotransmitters will enhance our understanding of modifiable risk factors, such as sleep, that contribute to the altered development of glutamatergic synapses in the brain and their relationship to social behavior. Support (if any) NSF #1926818, VA CDA #IK2 BX002712, Portland VA Research Foundation, NIH NHLBI 5T32HL083808-10, VA Merit Review #I01BX001643


Sign in / Sign up

Export Citation Format

Share Document