Both mitogen-activated protein kinase (MAPK)/extracellular-signal-regulated kinases (ERK) 1/2 and phosphatidylinositide-3-OH kinase (PI3K)/Akt pathways regulate activation of E-twenty-six (ETS)-like transcription factor 1 (Elk-1) in U138 glioblastoma cells

2012 ◽  
Vol 44 (2) ◽  
pp. 302-310 ◽  
Author(s):  
Melike Mut ◽  
Sevda Lule ◽  
Ozlem Demir ◽  
Isil Aksan Kurnaz ◽  
Imran Vural
1998 ◽  
Vol 18 (4) ◽  
pp. 1946-1955 ◽  
Author(s):  
Jun Xing ◽  
Jon M. Kornhauser ◽  
Zhengui Xia ◽  
Elizabeth A. Thiele ◽  
Michael E. Greenberg

ABSTRACT The mechanisms by which growth factor-induced signals are propagated to the nucleus, leading to the activation of the transcription factor CREB, have been characterized. Nerve growth factor (NGF) was found to activate multiple signaling pathways that mediate the phosphorylation of CREB at the critical regulatory site, serine 133 (Ser-133). NGF activates the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinases (MAPKs), which in turn activate the pp90 ribosomal S6 kinase (RSK) family of Ser/Thr kinases, all three members of which were found to catalyze CREB Ser-133 phosphorylation in vitro and in vivo. In addition to the ERK/RSK pathway, we found that NGF activated the p38 MAPK and its downstream effector, MAPK-activated protein kinase 2 (MAPKAP kinase 2), resulting in phosphorylation of CREB at Ser-133. Inhibition of either the ERK/RSK or the p38/MAPKAP kinase 2 pathway only partially blocked NGF-induced CREB Ser-133 phosphorylation, suggesting that either pathway alone is sufficient for coupling the NGF signal to CREB activation. However, inhibition of both the ERK/RSK and the p38/MAPKAP kinase 2 pathways completely abolished NGF-induced CREB Ser-133 phosphorylation. These findings indicate that NGF activates two distinct MAPK pathways, both of which contribute to the phosphorylation of the transcription factor CREB and the activation of immediate-early genes.


Blood ◽  
2014 ◽  
Vol 123 (7) ◽  
pp. 1102-1112 ◽  
Author(s):  
Tam Duong ◽  
Katarzyna Koltowska ◽  
Cathy Pichol-Thievend ◽  
Ludovic Le Guen ◽  
Frank Fontaine ◽  
...  

Key Points Haploinsufficiency of Sox18 reveals an important role for VEGFD in regulating blood vascular development in vivo in vertebrates. VEGFD acts through mitogen-activated protein kinase kinase–extracellular signal-regulated kinase to modulate the activity and nuclear concentration of endothelial-specific transcription factor SOX18.


2005 ◽  
Vol 139 (1) ◽  
pp. 127-137 ◽  
Author(s):  
Yun-Kiam Yap ◽  
Yutaka Kodama ◽  
Frank Waller ◽  
Kwi Mi Chung ◽  
Hirokazu Ueda ◽  
...  

2004 ◽  
Vol 63 (2) ◽  
pp. 227-232 ◽  
Author(s):  
Yun Chau Long ◽  
Ulrika Widegren ◽  
Juleen R. Zierath

Exercise training improves glucose homeostasis through enhanced insulin sensitivity in skeletal muscle. Muscle contraction through physical exercise is a physiological stimulus that elicits multiple biochemical and biophysical responses and therefore requires an appropriate control network. Mitogen-activated protein kinase (MAPK) signalling pathways constitute a network of phosphorylation cascades that link cellular stress to changes in transcriptional activity. MAPK cascades are divided into four major subfamilies, including extracellular signal-regulated kinases 1 and 2, p38 MAPK, c-Jun NH2-terminal kinase and extracellular signal-regulated kinase 5. The present review will present the current understanding of parallel MAPK signalling in human skeletal muscle in response to exercise and muscle contraction, with an emphasis on identifying potential signalling mechanisms responsible for changes in gene expression.


2004 ◽  
Vol 72 (10) ◽  
pp. 5662-5667 ◽  
Author(s):  
Nicola J. Mason ◽  
Jim Fiore ◽  
Takashi Kobayashi ◽  
Katherine S. Masek ◽  
Yongwon Choi ◽  
...  

ABSTRACT The production of interleukin-12 (IL-12) is critical to the development of innate and adaptive immune responses required for the control of intracellular pathogens. Many microbial products signal through Toll-like receptors (TLR) and activate NF-κB family members that are required for the production of IL-12. Recent studies suggest that components of the TLR pathway are required for the production of IL-12 in response to the parasite Toxoplasma gondii; however, the production of IL-12 in response to this parasite is independent of NF-κB activation. The adaptor molecule TRAF6 is involved in TLR signaling pathways and associates with serine/threonine kinases involved in the activation of both NF-κB and mitogen-activated protein kinase (MAPK). To elucidate the intracellular signaling pathways involved in the production of IL-12 in response to soluble toxoplasma antigen (STAg), wild-type and TRAF6−/− mice were inoculated with STAg, and the production of IL-12(p40) was determined. TRAF6−/− mice failed to produce IL-12(p40) in response to STAg, and TRAF6−/− macrophages stimulated with STAg also failed to produce IL-12(p40). Studies using Western blot analysis of wild-type and TRAF6−/− macrophages revealed that stimulation with STAg resulted in the rapid TRAF6-dependent phosphorylation of p38 and extracellular signal-related kinase, which differentially regulated the production of IL-12(p40). The studies presented here demonstrate for the first time that the production of IL-12(p40) in response to toxoplasma is dependent upon TRAF6 and p38 MAPK.


Sign in / Sign up

Export Citation Format

Share Document