Specificity characterization of the α-mating factor hormone by Kex2 protease

Biochimie ◽  
2016 ◽  
Vol 131 ◽  
pp. 149-158 ◽  
Author(s):  
Marcella Araújo Manfredi ◽  
Alyne Alexandrino Antunes ◽  
Larissa de Oliveira Passos Jesus ◽  
Maria Aparecida Juliano ◽  
Luiz Juliano ◽  
...  
Keyword(s):  
Gene ◽  
2017 ◽  
Vol 598 ◽  
pp. 50-62 ◽  
Author(s):  
Sabreen Chahal ◽  
Peter Wei ◽  
Pachai Moua ◽  
Sung Pil James Park ◽  
Janet Kwon ◽  
...  

1999 ◽  
Vol 275 (1) ◽  
pp. 109-115 ◽  
Author(s):  
Erhard G. Siegel ◽  
Rainer Günther ◽  
Heiner Schäfer ◽  
Ulrich R. Fölsch ◽  
Wolfgang E. Schmidt

Genetics ◽  
2001 ◽  
Vol 157 (4) ◽  
pp. 1469-1480 ◽  
Author(s):  
R S Nash ◽  
T Volpe ◽  
B Futcher

Abstract WHI3 is a gene affecting size control and cell cycle in the yeast Saccharomyces cerevisiae. The whi3 mutant has small cells, while extra doses of WHI3 produce large cells, and a large excess of WHI3 produces a lethal arrest in G1 phase. WHI3 seems to be a dose-dependent inhibitor of Start. Whi3 and its partially redundant homolog Whi4 have an RNA-binding domain, and mutagenesis experiments indicate that this RNA-binding domain is essential for Whi3 function. CLN3-1 whi3 cells are extremely small, nearly sterile, and largely nonresponsive to mating factor. Fertility is restored by deletion of CLN2, suggesting that whi3 cells may have abnormally high levels of CLN2 function.


2007 ◽  
Vol 6 (3) ◽  
pp. 487-494 ◽  
Author(s):  
Daniel Dignard ◽  
Ahmed L. El-Naggar ◽  
Mary E. Logue ◽  
Geraldine Butler ◽  
Malcolm Whiteway

ABSTRACT In the opaque state, MTL a and MTLα strains of Candida albicans are able to mate, and this mating is directed by a pheromone-mediated signaling process. We have used comparisons of genome sequences to identify a C. albicans gene encoding a candidate a-specific mating factor. This gene is conserved in Candida dubliniensis and is similar to a three-gene family in the related fungus Candida parapsilosis but has extremely limited similarity to the Saccharomyces cerevisiae MFA1 (ScMFA1) and ScMFA2 genes. All these genes encode C-terminal CAAX box motifs characteristic of prenylated proteins. The C. albicans gene, designated CaMFA1, is found on chromosome 2 between ORF19.2165 and ORF19.2219. MFA1 encodes an open reading frame of 42 amino acids that is predicted to be processed to a 14-amino-acid prenylated mature pheromone. Microarray analysis shows that MFA1 is poorly expressed in opaque MTL a cells but is induced when the cells are treated with α-factor. Disruption of this C. albicans gene blocks the mating of MTL a cells but not MTLα cells, while the reintegration of the gene suppresses this cell-type-specific mating defect.


Author(s):  
B. L. Soloff ◽  
T. A. Rado

Mycobacteriophage R1 was originally isolated from a lysogenic culture of M. butyricum. The virus was propagated on a leucine-requiring derivative of M. smegmatis, 607 leu−, isolated by nitrosoguanidine mutagenesis of typestrain ATCC 607. Growth was accomplished in a minimal medium containing glycerol and glucose as carbon source and enriched by the addition of 80 μg/ ml L-leucine. Bacteria in early logarithmic growth phase were infected with virus at a multiplicity of 5, and incubated with aeration for 8 hours. The partially lysed suspension was diluted 1:10 in growth medium and incubated for a further 8 hours. This permitted stationary phase cells to re-enter logarithmic growth and resulted in complete lysis of the culture.


Author(s):  
A.R. Pelton ◽  
A.F. Marshall ◽  
Y.S. Lee

Amorphous materials are of current interest due to their desirable mechanical, electrical and magnetic properties. Furthermore, crystallizing amorphous alloys provides an avenue for discerning sequential and competitive phases thus allowing access to otherwise inaccessible crystalline structures. Previous studies have shown the benefits of using AEM to determine crystal structures and compositions of partially crystallized alloys. The present paper will discuss the AEM characterization of crystallized Cu-Ti and Ni-Ti amorphous films.Cu60Ti40: The amorphous alloy Cu60Ti40, when continuously heated, forms a simple intermediate, macrocrystalline phase which then transforms to the ordered, equilibrium Cu3Ti2 phase. However, contrary to what one would expect from kinetic considerations, isothermal annealing below the isochronal crystallization temperature results in direct nucleation and growth of Cu3Ti2 from the amorphous matrix.


Author(s):  
B. H. Kear ◽  
J. M. Oblak

A nickel-base superalloy is essentially a Ni/Cr solid solution hardened by additions of Al (Ti, Nb, etc.) to precipitate a coherent, ordered phase. In most commercial alloy systems, e.g. B-1900, IN-100 and Mar-M200, the stable precipitate is Ni3 (Al,Ti) γ′, with an LI2structure. In A lloy 901 the normal precipitate is metastable Nis Ti3 γ′ ; the stable phase is a hexagonal Do2 4 structure. In Alloy 718 the strengthening precipitate is metastable γ″, which has a body-centered tetragonal D022 structure.Precipitate MorphologyIn most systems the ordered γ′ phase forms by a continuous precipitation re-action, which gives rise to a uniform intragranular dispersion of precipitate particles. For zero γ/γ′ misfit, the γ′ precipitates assume a spheroidal.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Sign in / Sign up

Export Citation Format

Share Document