A label-free electrochemical immunosensor based on encapsulated signal molecules in mesoporous silica-coated gold nanorods for ultrasensitive assay of procalcitonin

2021 ◽  
Vol 140 ◽  
pp. 107753 ◽  
Author(s):  
Yi-Ge Feng ◽  
Xiao-Yu Wang ◽  
Zhi-Wu Wang ◽  
Ai-Jun Wang ◽  
Li-Ping Mei ◽  
...  
2020 ◽  
Vol 28 ◽  
Author(s):  
Hayati Filik ◽  
Asiye Aslıhan Avan ◽  
Mustafa Özyürek

: The prostate-specific antigen (PSA) has been considered a crucial serological marker for distinguishing prostate based cancer. This surveys recent progress in the construction of nanomaterial-based electrochemical immunosensors for a PSA. This review (from 2015 to 2020) reports the latest progress in PSA sensing based on the employ of different types of nanostructured materials. The most popular used nanostructured materials are metal, metal oxide, carbon-based nanomaterials, and their hybrid architectures utilized for distinct amplification protocols. In this review, the electrochemical immunosensors for prostate-specific antigen sensing are classified into three categories such as sandwich type@labeled, label free@nonlabeled and aptamer-based electrochemical immunosensor.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rozita Abolhasan ◽  
Balal Khalilzadeh ◽  
Hadi Yousefi ◽  
Sahar Samemaleki ◽  
Forough Chakari-Khiavi ◽  
...  

AbstractIn the present article, we developed a highly sensitive label-free electrochemical immunosensor based on NiFe-layered double hydroxides (LDH)/reduced graphene oxide (rGO)/gold nanoparticles modified glassy carbon electrode for the determination of receptor tyrosine kinase-like orphan receptor (ROR)-1. In this electrochemical immunoassay platform, NiFe-LDH/rGO was used due to great electron mobility, high specific surface area and flexible structures, while Au nanoparticles were prepared and coated on the modified electrodes to improve the detection sensitivity and ROR1 antibody immobilizing (ROR1Ab). The modification procedure was approved by using cyclic voltammetry and differential pulse voltammetry based on the response of peak current to the step by step modifications. Under optimum conditions, the experimental results showed that the immunosensor revealed a sensitive response to ROR1 in the range of 0.01–1 pg mL−1, and with a lower limit of quantification of 10 attogram/mL (10 ag mL−1). Furthermore, the designed immunosensor was applied for the analysis of ROR1 in several serum samples of chronic lymphocytic leukemia suffering patients with acceptable results, and it also exhibited good selectivity, reproducibility and stability.


2021 ◽  
Author(s):  
Xiangrong Huang ◽  
Na Wu ◽  
Wenxiu Liu ◽  
Yazhuo Shang ◽  
Honglai Liu ◽  
...  

In this work, a novel redox hydrogel was proposed for ultrasensitive label-free electrochemical detection of carcinoembryonic antigen (CEA). The redox hydrogel composed by cellulose nanocrystalline (CNC), methylene blue (MB), multi-walled...


The Analyst ◽  
2021 ◽  
Author(s):  
Xinke Liu ◽  
Lu-Yin Lin ◽  
Fu-Yen Tseng ◽  
Yu-Cheng Tan ◽  
Jian Li ◽  
...  

Matrix metalloproteinase-1 (MMP-1) is associated with many types of cancers, including oral, colorectal, and brain cancers. This paper describes the fabrication of an MMP-1 immunosensor based on a gold nanoparticle/polyethyleneimine/reduced...


RSC Advances ◽  
2015 ◽  
Vol 5 (70) ◽  
pp. 56583-56589 ◽  
Author(s):  
Yulan Wang ◽  
Dan Wu ◽  
Yong Zhang ◽  
Xiang Ren ◽  
Yaoguang Wang ◽  
...  

In this work, a novel and ultrasensitive label-free electrochemical immunosensor was developed for the quantitative detection of alpha fetoprotein (AFP).


Sign in / Sign up

Export Citation Format

Share Document