Noninvasive nuclear factor-κB bioluminescence imaging for the assessment of host–biomaterial interaction in transgenic mice

Biomaterials ◽  
2007 ◽  
Vol 28 (30) ◽  
pp. 4370-4377 ◽  
Author(s):  
T HO ◽  
Y CHEN ◽  
C HSIANG
2015 ◽  
Vol 308 (10) ◽  
pp. C803-C812 ◽  
Author(s):  
Colin N. Young ◽  
Anfei Li ◽  
Frederick N. Dong ◽  
Julie A. Horwath ◽  
Catharine G. Clark ◽  
...  

Endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) generation in the brain circumventricular subfornical organ (SFO) mediate the central hypertensive actions of Angiotensin II (ANG II). However, the downstream signaling events remain unclear. Here we tested the hypothesis that angiotensin type 1a receptors (AT1aR), ER stress, and ROS induce activation of the transcription factor nuclear factor-κB (NF-κB) during ANG II-dependent hypertension. To spatiotemporally track NF-κB activity in the SFO throughout the development of ANG II-dependent hypertension, we used SFO-targeted adenoviral delivery and longitudinal bioluminescence imaging in mice. During low-dose infusion of ANG II, bioluminescence imaging revealed a prehypertensive surge in NF-κB activity in the SFO at a time point prior to a significant rise in arterial blood pressure. SFO-targeted ablation of AT1aR, inhibition of ER stress, or adenoviral scavenging of ROS in the SFO prevented the ANG II-induced increase in SFO NF-κB. These findings highlight the utility of bioluminescence imaging to longitudinally track transcription factor activation during the development of ANG II-dependent hypertension and reveal an AT1aR-, ER stress-, and ROS-dependent prehypertensive surge in NF-κB activity in the SFO. Furthermore, the increase in NF-κB activity before a rise in arterial blood pressure suggests a causal role for SFO NF-κB in the development of ANG II-dependent hypertension.


2008 ◽  
Vol 85 (6) ◽  
pp. 903-910 ◽  
Author(s):  
Lianli Ma ◽  
Zhidan Xiang ◽  
Taylor P. Sherrill ◽  
Lei Wang ◽  
Timothy S. Blackwell ◽  
...  

Endocrinology ◽  
2007 ◽  
Vol 148 (6) ◽  
pp. 2708-2715 ◽  
Author(s):  
Kiyoshi Hiramatsu ◽  
Yutaro Asaba ◽  
Sunao Takeshita ◽  
Yuji Nimura ◽  
Sawako Tatsumi ◽  
...  

We previously identified γ-glutamyltransferase (GGT) by expression cloning as a factor inducing osteoclast formation in vitro. To examine its pathogenic role in vivo, we generated transgenic mice that overexpressed GGT in a tissue-specific manner utilizing the Cre-loxP recombination system. Systemic as well as local production of GGT accelerated osteoclast development and bone resorption in vivo by increasing the sensitivity of bone marrow macrophages to receptor activator of nuclear factor-κB ligand, an essential cytokine for osteoclastogenesis. Mutated GGT devoid of enzyme activity was as potent as the wild-type molecule in inducing osteoclast formation, suggesting that GGT acts not as an enzyme but as a cytokine. Recombinant GGT protein increased receptor activator of nuclear factor-κB ligand expression in marrow stromal cells and also stimulated osteoclastogenesis from bone marrow macrophages at lower concentrations. Thus, GGT is implicated as being involved in diseases characterized by accelerated osteoclast development and bone destruction and provides a new target for therapeutic intervention.


Circulation ◽  
2007 ◽  
Vol 115 (14) ◽  
pp. 1885-1894 ◽  
Author(s):  
Hong-Liang Li ◽  
Ming-Lei Zhuo ◽  
Dong Wang ◽  
Ai-Bing Wang ◽  
Hua Cai ◽  
...  

Background— A20 was originally characterized as a tumor necrosis factor–inducible gene in human umbilical vein endothelial cells. As an inhibitor of nuclear factor-κB signaling, A20 protects against apoptosis, inflammation, and cardiac hypertrophy. In the present study, we tested the hypothesis that cardiac-specific overexpression of A20 could protect the heart from myocardial infarction. Methods and Results— We investigated the role of constitutive human A20 expression in acute myocardial infarction using a transgenic model. Transgenic mice containing the human A20 gene under the control of the α-myosin heavy chain promoter were constructed. Myocardial infarction was produced by coronary ligation in A20 transgenic mice and control animals. The extent of infarction was then quantified by 2-dimensional and M-mode echocardiography and by molecular and pathological analyses of heart samples in infarct and remote heart regions 7 days after myocardial infarction. Constitutive overexpression of A20 in the murine heart resulted in attenuated infarct size and improved cardiac function 7 days after myocardial infarction. Significantly, we found a decrease in nuclear factor-κB signaling and apoptosis, as well as proinflammatory response, cardiac remodeling, and interstitial fibrosis, in noninfarct regions in the hearts of constitutive A20-expressing animals compared with control animals. Conclusions— Cardiac-specific overexpression of A20 improves cardiac function and inhibits cardiac remodeling, apoptosis, inflammation, and fibrosis after acute myocardial infarction.


Sign in / Sign up

Export Citation Format

Share Document