Multiphoton microfabrication and micropatternining (MMM)-based screening of multiplex cell niche factors for phenotype maintenance - Bovine nucleus pulposus cell as an example

Biomaterials ◽  
2022 ◽  
pp. 121367
Author(s):  
Chi Hung Yip ◽  
Abigail Dee Chen ◽  
Yu Hin Wong ◽  
Barbara Pui Chan
Surgeries ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 92-104
Author(s):  
Xingshuo Zhang ◽  
Julien Guerrero ◽  
Andreas S. Croft ◽  
Katharina A.C. Oswald ◽  
Christoph E. Albers ◽  
...  

(1) Background: Low back pain (LBP) is often associated with intervertebral disc degeneration (IVDD). Autochthonous progenitor cells isolated from the center, i.e., the nucleus pulposus, of the IVD (so-called nucleus pulposus progenitor cells (NPPCs)) could be a future cell source for therapy. The NPPCs were also identified to be positive for the angiopoietin-1 receptor (Tie2). Similar to hematopoietic stem cells, Tie2 might be involved in peroxisome proliferator-activated receptor delta (PPARδ) agonist-induced self-renewal regulation. The purpose of this study was to investigate whether a PPARδ agonist (GW501516) increases the Tie2+ NPPCs’ yield within the heterogeneous nucleus pulposus cell (NPC) population. (2) Methods: Primary NPCs were treated with 10 µM of GW501516 for eight days. Mitochondrial mass was determined by microscopy, using mitotracker red dye, and the relative gene expression was quantified by qPCR, using extracellular matrix and mitophagy-related genes. (3) The NPC’s group treated with the PPARδ agonist showed a significant increase of the Tie2+ NPCs yield from ~7% in passage 1 to ~50% in passage two, compared to the NPCs vehicle-treated group. Furthermore, no significant differences were found among treatment and control, using qPCR and mitotracker deep red. (4) Conclusion: PPARδ agonist could help to increase the Tie2+ NPCs yield during NPC expansion.


Biomaterials ◽  
2021 ◽  
pp. 121113
Author(s):  
Xiaohong Tan ◽  
Era Jain ◽  
Marcos N. Barcellona ◽  
Evan Morris ◽  
Sydney Neal ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yiqiang Hu ◽  
Ranyang Tao ◽  
Linfang Wang ◽  
Lang Chen ◽  
Ze Lin ◽  
...  

Oxidative stress is relevant in compression-induced nucleus pulposus (NP) cell apoptosis and intervertebral disc (IVD) degeneration. Exosomes derived from bone mesenchymal stem cells (BMSCs-Exos) are key secretory products of MSCs, with important roles in tissue regeneration. This research is aimed at studying the protective impact of BMSCs-Exos on NP cell apoptosis caused by compression and investigating the underlying mechanisms. Our results indicated that we isolated BMSCs successfully. Exosomes were isolated from the BMSCs and found to alleviate the inhibitory effect that compression has on proliferation and viability in NP cells, decreasing the toxic effects of compression-induced NP cells. AnnexinV/PI double staining and TUNEL assays indicated that the BMSCs-Exos reduced compression-induced apoptosis. In addition, our research found that BMSCs-Exos suppressed compression-mediated NP oxidative stress by detecting the ROS and malondialdehyde level. Furthermore, BMSCs-Exos increased the mitochondrial membrane potential and alleviated compression-induced mitochondrial damage. These results indicate that BMSCs-Exos alleviate compression-mediated NP apoptosis by suppressing oxidative stress, which may provide a promising cell-free therapy for treating IVD degeneration.


Sign in / Sign up

Export Citation Format

Share Document