Moisture sorption behaviour of jatropha seed (Jatropha curcas) as a source of vegetable oil for biodiesel production

2012 ◽  
Vol 36 ◽  
pp. 226-233 ◽  
Author(s):  
I. Amalia Kartika ◽  
S. Yuliani ◽  
S.I. Kailaku ◽  
L. Rigal
2020 ◽  
Author(s):  
Vitor J Bianchini ◽  
Gabriel M Mascarin ◽  
Lúcia CAS Silva ◽  
Valter Arthur ◽  
Jean M Carstensen ◽  
...  

Abstract Background: Jatropha curcas is an oilseed plant with great potential for biodiesel production. In agricultural industry, the seed quality is still estimated by manual inspection, using destructive, time-consuming and subjective tests that depend on the seed analyst experience. Recent advances in machine vision combined with artificial intelligence algorithms can provide spatial and spectral information for characterization of biological images, reducing subjectivity and optimizing the analysis process.Results: We present a new method for automatic characterization of jatropha seed quality, based on multispectral imaging (MSI) combined with X-ray imaging. We propose an approach along with X-ray images in order to investigate internal problems such as damages in the embryonic axis and endosperm, considering the fact that seed surface profiles can be negatively affected, but without reaching important internal regions of the seeds. Our studies included the application of a normalized canonical discriminant analyses (nCDA) algorithm as a supervised transformation building method to classify spatial and spectral patters according to the classes of seed quality. Spectral reflectance signatures in a range of 780 to 970 nm and the X-ray images can efficiently predict quality traits such as normal seedlings, abnormal seedlings and dead seeds.Conclusions: MSI and X-ray images have a strong relationship with physiological performance of Jatropha curcas L. These techniques can be alternative methods for rapid, efficient, sustainable and non-destructive characterization of jatropha seed quality in the future, overcoming the intrinsic subjectivity of the conventional seed quality analysis.


2021 ◽  
Vol 27 (4) ◽  
pp. 33-45
Author(s):  
Ejiro Thelma Akhihiero ◽  
Bamidele Victor Ayodele ◽  
May Ali Alsaffar ◽  
T. O.K. Audu ◽  
E. O. Aluyor

The world is confronted with the twin crisis of fossil fuel depletion and environmental degradation caused by fossil fuel usage. Biodiesel produced from renewable feedstocks such as Jatropha seed oil or animal fats by transesterification offers a solution. Although biodiesel has been produced from various vegetable oils such as Jatropha seed oil, the reaction kinetics studies are very few in literature, hence the need for this study. Jatropha curcas seed oil was extracted and analyzed to determine its free fatty acid and fatty acid composition. The oil was transesterified with methanol at a molar ratio of methanol to oil 8:1, using 1% sodium hydroxide catalyst, at different temperatures ranging from 32oC to 65oC, at atmospheric pressure. The order of the reactions with respect to the triglyceride's disappearance in the forward reaction at the chosen temperatures was found to be pseudo-first-order and found to be first-order for the reaction at 32oC. The rate constants of the three consecutive reaction steps at 65oC, namely, triglyceride to diglyceride, diglyceride to monoglyceride, and monoglyceride to glycerol, were found to be 0.422 min-1 0.117 min-1, and 0.037min-1, respectively. Their corresponding activation energies in J/mol were 22.165, 3.136, and 19.770, respectively.


2012 ◽  
Vol 620 ◽  
pp. 335-339 ◽  
Author(s):  
M.F. Rabiah Nizah ◽  
Y.H. Taufiq-Yap ◽  
Mohd Zobir Hussein

Biodiesel is viewed as the most promising alternative fuel to replace petroleum-based diesel since it is derived from renewable sources such as animal fats, vegetable oil and grease. Out of various vegetable oil resources for biodiesel production,Jatropha curcasoil (JCO) is a viable choice for biodiesel because it is non-edible and can be grown easily in a harsh environment. In this study, Nd2O3-La2O3catalyst was prepared for transesterification of JCO with methanol, in order to evaluate its potential as a heterogeneous catalyst for biodiesel production. Under suitable transesterification condition at 210 °C with catalyst amount of 3 wt.%, methanol/oil molar ratio of 45 and reaction time for 4 h, the conversion of JCO to fatty acid methyl ester (FAME) achieved was more than 93% over Nd2O3-La2O3catalyst.


2014 ◽  
Vol 32 (2) ◽  
pp. 255-265 ◽  
Author(s):  
Omar Montenegro R. ◽  
Stanislav Magnitskiy ◽  
Martha C. Henao T.

This study was conducted to assess fruit and seed yield, oil content and oil composition of Jatropha curcas fertilized with different doses of nitrogen and potassium in Espinal (Tolima, Colombia). The yields ranged from 4,570 to 8,800 kg ha-1 of fruits and from 2,430 to 4,746 kg ha-1 of seeds. These yields showed that the fertilizer dose of 150 kg ha-1 N + 120 kg ha-1K increased fruit production by 92% and seed production by 95%, which represents an increase of about 100% in oil production, which increased from 947 to 1,900 kg ha-1. The total oil content in the seeds ranged from 38.7 to 40.1% (w/w) with a high content of the unsaturated fatty acids oleic (> 47%) and linoleic acid (> 29%). The highest content of oleic acid in the seed oil was from the unfertilized control plants and plants with an application of 100 kg ha-1 of N and 60 kg ha-1 of K, with an average of 48%. The lowest content of oleic acid was registered when a low dose of nitrogen and a high level of potassium were applied at a ratio of 1:2.4 and doses of 50 kg ha-1 N + 120 kg ha-1 K, respectively. Low contents of the saturated fatty acids palmitic (13.4%) and stearic (7.26%) were obtained, making this oil suitable for biodiesel production. The nitrogen was a more important nutrient for the production and quality of oil in J. curcas than potassium under the studied conditions of soil and climate.


2021 ◽  
Vol 25 (4) ◽  
pp. 537-542
Author(s):  
C.A. Odega ◽  
G.T. Anguruwa ◽  
C.O. Fakorede

Biodiesel is a fuel produced from renewable resources; it is a clean alternative fuel, which has drawn the attention of energy researchers for the last two decades due to the disturbing effect of climate change caused by diesel fuel. This paper focuses on showcasing the qualities of biodiesel produced from used vegetable oil and the positive impact on the alarming change in climate today. This paper presents an experimental investigation on production of biodiesel from used vegetable oil (UVO) gotten from a road side bean cake (akara) seller. The oil that was intended to be thrown out was de-odoured and filtered to remove impurities. The filtered oil was then used for biodiesel production and characterized with physical and fuel properties such as density, viscosity, cloud point, refractive index, specific gravity, ash content, moisture content, flash point and cloud point. The results obtained were afterwards compared to ASTM (American Society for Testing and Materials) and EN (Europe’s) international standards. Two biodiesels samples were produced at different temperatures but the same timings. The biodiesel were produced at 700C at 40mins (biodiesel A) and 1000C at 40mins (biodiesel B) with values of specific gravity (0.98 kg/m3; 0.90 kg/m3), density (936kg/m3; 882kg/m3), kinematic viscosity (1.5mm/s2; 5.5 mm/s2), cloud point (150C; 20C), flash point (2600C min; 2000C min), moisture content (0.07%; 0.04%), refractive index (1.4609; 1.4398) and ash point (0.24%; 0.01%) respectively. On comparison, biodiesel A couldn’t match up to the international standards while biodiesel matched up to the standards given.


Sign in / Sign up

Export Citation Format

Share Document