Inhibitors of aminoacyl-tRNA synthetases as antimycobacterial compounds: an up-to-date review

2021 ◽  
pp. 104806
Author(s):  
Ghada Bouz ◽  
Jan Zitko
Author(s):  
Natalie Krahn ◽  
Jeffery M. Tharp ◽  
Ana Crnković ◽  
Dieter Söll

2021 ◽  
Vol 7 (8) ◽  
pp. 593
Author(s):  
Jingjing Wang ◽  
Alexander Berestetskiy ◽  
Qiongbo Hu

Destruxin A (DA), a hexa-cyclodepsipeptidic mycotoxin produced by the entomopathogenic fungus Metarhizium anisopliae, exhibits insecticidal activities in a wide range of pests and is known as an innate immunity inhibitor. However, its mechanism of action requires further investigation. In this research, the interactions of DA with the six aminoacyl tRNA synthetases (ARSs) of Bombyx mori, BmAlaRS, BmCysRS, BmMetRS, BmValRS, BmIleRS, and BmGluProRS, were analyzed. The six ARSs were expressed and purified. The BLI (biolayer interferometry) results indicated that DA binds these ARSs with the affinity indices (KD) of 10−4 to 10−5 M. The molecular docking suggested a similar interaction mode of DA with ARSs, whereby DA settled into a pocket through hydrogen bonds with Asn, Arg, His, Lys, and Tyr of ARSs. Furthermore, DA treatments decreased the contents of soluble protein and free amino acids in Bm12 cells, which suggested that DA impedes protein synthesis. Lastly, the ARSs in Bm12 cells were all downregulated by DA stress. This study sheds light on exploring and answering the molecular target of DA against target insects.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bingyi Chen ◽  
Siting Luo ◽  
Songxuan Zhang ◽  
Yingchen Ju ◽  
Qiong Gu ◽  
...  

AbstractThe polyketide natural product reveromycin A (RM-A) exhibits antifungal, anticancer, anti-bone metastasis, anti-periodontitis and anti-osteoporosis activities by selectively inhibiting eukaryotic cytoplasmic isoleucyl-tRNA synthetase (IleRS). Herein, a co-crystal structure suggests that the RM-A molecule occupies the substrate tRNAIle binding site of Saccharomyces cerevisiae IleRS (ScIleRS), by partially mimicking the binding of tRNAIle. RM-A binding is facilitated by the copurified intermediate product isoleucyl-adenylate (Ile-AMP). The binding assays confirm that RM-A competes with tRNAIle while binding synergistically with l-isoleucine or intermediate analogue Ile-AMS to the aminoacylation pocket of ScIleRS. This study highlights that the vast tRNA binding site of the Rossmann-fold catalytic domain of class I aminoacyl-tRNA synthetases could be targeted by a small molecule. This finding will inform future rational drug design.


1987 ◽  
Vol 248 (1) ◽  
pp. 43-51 ◽  
Author(s):  
J Charlier ◽  
R Sanchez

In contrast with most aminoacyl-tRNA synthetases, the lysyl-tRNA synthetase of Escherichia coli is coded for by two genes, the normal lysS gene and the inducible lysU gene. During its purification from E. coli K12, lysyl-tRNA synthetase was monitored by its aminoacylation and adenosine(5′)tetraphospho(5′)adenosine (Ap4A) synthesis activities. Ap4A synthesis was measured by a new assay using DEAE-cellulose filters. The heterogeneity of lysyl-tRNA synthetase (LysRS) was revealed on hydroxyapatite; we focused on the first peak, LysRS1, because of its higher Ap4A/lysyl-tRNA activity ratio at that stage. Additional differences between LysRS1 and LysRS2 (major peak on hydroxyapatite) were collected. LysRS1 was eluted from phosphocellulose in the presence of the substrates, whereas LysRS2 was not. Phosphocellulose chromatography was used to show the increase of LysRS1 in cells submitted to heat shock. Also, the Mg2+ optimum in the Ap4A-synthesis reaction is much higher for LysRS1. LysRS1 showed a higher thermostability, which was specifically enhanced by Zn2+. These results in vivo and in vitro strongly suggest that LysRS1 is the heat-inducible lysU-gene product.


Sign in / Sign up

Export Citation Format

Share Document