scholarly journals Novel bioactive properties of low-polarity fractions from sea-buckthorn extracts (Elaeagnus rhamnoides (L.) A. Nelson) – (in vitro)

2021 ◽  
Vol 135 ◽  
pp. 111141
Author(s):  
B. Marciniak ◽  
R. Kontek ◽  
J. Żuchowski ◽  
A. Stochmal
2021 ◽  
Author(s):  
Cadmiel Moldovan ◽  
Mihai Babotă ◽  
Andrei Mocan ◽  
Luigi Menghini ◽  
Stefania Cesa ◽  
...  

Nowadays, it is very important to identify the traditional uses of different plants and to create the context in which new cultural or economic value is given to local resources....


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2835
Author(s):  
Anna Stochmal ◽  
Bartosz Skalski ◽  
Rostyslav Pietukhov ◽  
Beata Sadowska ◽  
Joanna Rywaniak ◽  
...  

Although the major components of various organs of sea buckthorn have been identified (particularly phenolic compounds), biological properties of many of these phytochemicals still remain poorly characterized. In this study, we focused on the chemical composition and biological activity of preparations that were obtained from sea buckthorn twigs and leaves. The objective was to investigate cytotoxicity of these preparations against human fibroblast line HFF-1, using MTT reduction assay, their anti- or pro-oxidant activities against the effects of a biological oxidant -H2O2/Fe—on human plasma lipids and proteins in vitro (using TBARS and carbonyl groups as the markers of oxidative stress). Antimicrobial activity of the tested preparations against Gram-positive (Staphylococcus aureus, S. epidermidis, Enterococcus faecalis) and Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa), as well as against fungi (Candida albicans, C. glabrata) by the EUCAST-approved broth microdilution method, followed by growth on solid media, were also assessed. Our analysis showed significant differences in chemical composition and biological properties of the tested preparations (A–F). All tested preparations from sea buckthorn twigs (D–F) and one preparation from sea buckthorn leaves (preparation C) may be a new source of phenolic antioxidants for pharmacological and cosmetic applications.


2019 ◽  
Vol 10 (4) ◽  
pp. 1856-1869 ◽  
Author(s):  
Joana R. Costa ◽  
Manuela Amorim ◽  
Ana Vilas-Boas ◽  
Renata V. Tonon ◽  
Lourdes M. C. Cabral ◽  
...  

Grape pomace (GP) is a major byproduct worldwide, and it is well known for its bioactive compounds, such as fibers and phenolic compounds, that are popular for their impact upon human health, including in gastrointestinal health.


2019 ◽  
Vol 8 (4) ◽  
pp. 48-52
Author(s):  
O. V. Trineeva

Introduction. Recently, much attention has been paid to the primary assessment of the pharmacological effect of various drugs using in vivo and in vitro tests. It is known that such a medicinal plant as sea buckthorn, in its phytochemical composition is rich in natural antioxidants: carotenoids, tocopherols, flavonoids, ascorbic acid, etc. In some publications there is information about the antioxidant activity of sea buckthorn and fatty oil based on them. However, information on the comparative characteristics of the use of various methods for determining the antioxidant activity of this type of medicinal plant material and the results obtained are not found in the scientific literature.Aim. The aim of this work was a comparative determination of the antioxidant activity of medicinal plant material of buckthorn fruits of various species of buckthorn.Materials and methods. The total antioxidant activity of water and water-alcohol extracts from the fruits of sea buckthorn fruits was determined using various techniques recommended in the literature. The antioxidant activity of the extracts was determined by permanganometric titration, in vitro inhibition of adrenaline autooxidation, and also in a biological model, Parametium caudatum cell culture.Results and discussion. The effect of the extractant polarity on the value of antioxidant activity was studied. It was found that the highest content of antioxidants in the extraction is observed when using 96 % ethanol as an extractant.Conclusion. Using three methods, the prospects of using sea buckthorn fruits and preparations based on them as a source of antioxidants are shown. 


2018 ◽  
Vol 47 (4) ◽  
pp. 410-416
Author(s):  
W.M. Du ◽  
F.H. Wang ◽  
H.Y. Zhang ◽  
B.Z. Jiang ◽  
X.Y. Chen ◽  
...  
Keyword(s):  

2013 ◽  
Vol 34 (5) ◽  
pp. 1078-1084 ◽  
Author(s):  
Eun-Kyung Kim ◽  
Hyun-Jung Oh ◽  
Yon-Suk Kim ◽  
Jin-Woo Hwang ◽  
Chang-Bum Ahn ◽  
...  

2020 ◽  
pp. 004051752097017
Author(s):  
Lu Wang ◽  
Chenmeizi Wang ◽  
Ling Wang ◽  
Qingle Zhang ◽  
Ying Wang ◽  
...  

Prolonging the duration of drug action and reducing toxicity play a vital role in wound administration as they reduce the chance of infection and decrease complications and cost. This study reports the natural antioxidant procyanidins extracted from sea buckthorn (SBT) and laboratory-manufactured Apocynum venetum cellulose nanofiber as core drugs. The sustained-release nanofiber membrane was prepared by electrospinning on polylactic acid/polyvinyl pyrrolidone nanofibers. High-performance liquid chromatography-mass spectrometry was used to identify the phenolic compounds in SBT extracts and confirmed the presence of procyanidins with a content of 0.0345 mg/g. The nanofiber membrane was characterized through transmission electron microscopy, encapsulation efficiency, in vitro drug-release study and antioxidant assay. The results indicated that the extracted procyanidins were successfully encapsulated in the core–sheath structure nanofibers, and the encapsulation efficiency of nanofiber membranes reached 83.84%. In vitro measurements of the delivery showed this core–sheath structure could significantly alleviate the drug burst release, which is followed by a linear and smooth release within 30 hours. Further tests showed that the removal efficiency of 2,2-diphenyl-1-picrylhydrazyl reached 88.62%, indicating that the membranes had high antioxidant activity. This work implies that the combination of Apocynum venetum nanocellulose and emulsion electrospun fibers has promising potential applications in tissue engineering or drug delivery.


2020 ◽  
Vol 11 ◽  
Author(s):  
Liwei Chen ◽  
Daoyan Wu ◽  
Joergen Schlundt ◽  
Patricia L. Conway

Lactobacillus fermentum PC1 with proven probiotic properties was used to ferment oats with added honey to develop a probiotic beverage with enhanced bioactive ingredients. The viable Lactobacilli were enumerated during the fermentation and storage at 4°C, as well as after exposure to simulated gastrointestinal tract conditions. Good survival was noted both during storage as well as when exposed to the in vitro digestive tract conditions. Comparative analysis of the antioxidant activity, total phenolic content, and phenolic composition indicated fermentation improved the total antioxidant capacity and phenolic acid concentration. An increase of more than 50% of gallic acid, catechin, vanillic acid, caffeic acid, p-coumaric acid, and ferulic acid was observed in the methanol extracts. Moreover, no significant decrease in the β-glucan content was noted during fermentation and storage. In conclusion, this fermented product has a great potential as a functional food with enhanced probiotic survival and increased bioactive ingredients.


Sign in / Sign up

Export Citation Format

Share Document