scholarly journals Phenethyl isothiocyanate attenuates diabetic nephropathy via modulation of glycative/oxidative/inflammatory signaling in diabetic rats

2021 ◽  
pp. 111666
Author(s):  
Nada H. Eisa ◽  
Ahmed E. Khodir ◽  
Mohamed El-Sherbiny ◽  
Nehal M. Elsherbiny ◽  
Eman Said
Cell Reports ◽  
2020 ◽  
Vol 32 (13) ◽  
pp. 108207
Author(s):  
Xiao Wei ◽  
Zongshi Lu ◽  
Li Li ◽  
Hexuan Zhang ◽  
Fang Sun ◽  
...  

2014 ◽  
Vol 92 (5) ◽  
pp. 405-417 ◽  
Author(s):  
Xian-Wei Li ◽  
Yan Liu ◽  
Wei Hao ◽  
Jie-Ren Yang

Sequoyitol decreases blood glucose, improves glucose intolerance, and enhances insulin signaling in ob/ob mice. The aim of this study was to investigate the effects of sequoyitol on diabetic nephropathy in rats with type 2 diabetes mellitus and the mechanism of action. Diabetic rats, induced with a high-fat diet and a low dose of streptozotocin, and were administered sequoyitol (12.5, 25.0, and 50.0 mg·(kg body mass)−1·d−1) for 6 weeks. The levels of fasting blood glucose (FBG), serum insulin, blood urea nitrogen (BUN), and serum creatinine (SCr) were measured. The expression levels of p22phox, p47phox, NF-κB, and TGF-β1 were measured using immunohistochemisty, real-time PCR, and (or) Western blot. The total antioxidative capacity (T-AOC), as well as the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) were also determined. The results showed that sequoyitol significantly decreased FBG, BUN, and SCr levels, and increased the insulin levels in diabetic rats. The level of T-AOC was significantly increased, while ROS and MDA levels and the expression of p22phox, p47phox, NF-κB, and TGF-β1 were decreased with sequoyitol treatment both in vivo and in vitro. These results suggested that sequoyitol ameliorates the progression of diabetic nephropathy in rats, as induced by a high-fat diet and a low dose of streptozotocin, through its glucose-lowering effects, antioxidant activity, and regulation of TGF-β1 expression.


2011 ◽  
Vol 12 (12) ◽  
pp. 8431-8448 ◽  
Author(s):  
Consuelo Lomas-Soria ◽  
Minerva Ramos-Gómez ◽  
Lorenzo Guevara-Olvera ◽  
Ramón Guevara-González ◽  
Irineo Torres-Pacheco ◽  
...  

2019 ◽  
Vol 23 (2) ◽  
pp. 218-221
Author(s):  
L. V. Yanitskaya ◽  
L. F. Osinskaya ◽  
A. V. Redko

Hyperglycemia of diabetes mellitus leads to the activation of the polyol way of oxidation of glucose with the activation of the enzymes of aldose reductase and sorbitol dehydrogenase and of their coenzymes NADPH and NAD, which triggers the mechanism of formation of sorbitol. The consequences of these changes lead to microangiopathy of the tissues of the kidneys, which may be one of the pathogenetic mechanisms of diabetic nephropathy. In an accessible literature, the role of coenzymes of sorbitol pathway in the development of diabetic nephropathy is not sufficiently defined. The purpose of the study was to study the content of NAD and NADPH coenzymes, their correlation, and their role in the mechanism of kidney damage in diabetes mellitus and to predict the possible correction of these changes with the NAD-nicotinamide derivative. The study was conducted on a model of streptotrozectinic diabetes mellitus (single administration of streptozotocin in a dose of 60 mg per 1 kg of body weight). Four weeks after induction of diabetes, nicotinamide (100 mg per 1 kg body weight) was injected. The level of glucose was determined by the Accu-chek (Roshe Diagnostics, Switzerland) glucose meter. The content of NAD and NADH was determined in the non-protein extracts. The statistical analysis was carried out using the Microsoft Excel statistical analysis program. The difference between the indicators was considered statistically significant (p<0.05). The NAD level was reduced by 31%, the NAD/NADN ratio was 32%. The dependence of the ratio of NADP/NADPN in conditions of hyperglycemia of diabetes mellitus with clinical manifestations of diabetic nephropathy is determined. A decrease in the ratio of NADP/NADPN to 38% in the rat kidney in the cortical layer was detected. The introduction of nicotinamide normalized the reduced content of NAD diabetic rats. These results provide perspectives for further research in which nicotinamide can be used as a renal protector.


2007 ◽  
Vol 22 (5) ◽  
pp. 337-341 ◽  
Author(s):  
Célia Sperandéo Macedo ◽  
Mauro Masson Lerco ◽  
Sônia Maria Capelletti ◽  
Reinaldo José Silva ◽  
Daniela de Oliveira Pinheiro ◽  
...  

PURPOSE: To determine podocyte number and GBM thickness in diabetic rats either under glycemic control or without glycemic control at 6 and 12 months after diabetes induction. METHODS: 100 wistar rats weighing 200-300g were divided into 6 groups: Normal group (N6 and N12- 25 rats); Diabetic group (D6 and D12- 25 rats), diabetic treated group ( DT 6 and DT 12- 25 rats) on insulin 1,8- 3,0 IU/Kg associated with acarbose (50mg to 100g of food) daily mixed in chow. Alloxan was injected intravenously in a dose of 42 mg/Kg of weight. Body weight, waterintake, 24-h diuresis, glycemia and glucosuria were determined before induction, 7 and 14 days after induction and monthly thereafter. Treatment started at day 14. Three groups were sacrificed at 6 months (N6,D6, DT6) and 3 groups at 12 months (N12, D12, DT12) with the renal tissue being prepared for electron microscopy. RESULTS: Glycemia in DT6¨and in DT12 was significantly different from that in D6 and D12 rats and similar to that in N6 and N12 animals. The number of podocytes in DT6 was not different from that in N6 and D6 (median = 11); the number of podocytes in DT12 (median = 11) differed from that in D12 (median = 8), but not from that in N12 (median = 11). GBM thickness in D6 (0.18 micrometers) was lower than in D12 (0.29 micrometers); while in DT6 (0.16 micrometers) it was lower than in D6 (0.18 micrometers). In DT12 (0.26 micrometers), it was lower than in D12 (0.29 micrometers). CONCLUSION: The control of hyperglycemia prevented GBM thickening in early and late (12 mo) alloxan diabetic nephropathy and podocyte number reduction.


Open Medicine ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. 890-898 ◽  
Author(s):  
Chen Jihua ◽  
Chen Cai ◽  
Bao Xubin ◽  
Yu Yue

AbstractObjectiveTo investigate the effects and mechanisms of dexmedetomidine (Dex) on model rats of diabetic nephropathy (DN).MethodsRats were divided into NC, model, Dex-L (1μg/ kg), Dex-M (5μg/kg) and Dex-H (10μg/kg) groups. Rats in all groups except in the NC group were injected with streptozotocin (STZ) combined with right nephrectomy. Rats in Dex (1, 5 and 10μg/kg) groups received gavage with Dex (1, 5 and 10μg/kg). After 4 weeks, rats were sacrificed and kidneys were collected. HE staining was performed for a renal injury. Masson staining was applied to detect the fibrotic accumulation in rat kidney. Radioimmunoassay was used to test the renal function. Immunohistochemical method was used to detect protein expressions of RhoA, p-MYPT and Nox4 in rat kidney.ResultsCompared with the NC group, the levels of urine microalbumin in protein, α1-MG and β2-MG, renal fibrotic accumulation, RhoA, p-MYPT, Nox4 and α-SMA in model group increased significantly (P<0.001, respectively). Compared with the model group, Dex low, medium and high groups improved the deposition of renal fiber in rats, inhibited the expression levels of microalbumin, α1-MG and β2-MG in urine and decreased expression of RhoA, p-MYPT, Nox4 and α-SMA proteins (P<0.05, P<0.01).ConclusionDex is possible to inhibit the expression of α-SMA and renal fibrous substance deposition in rat kidney via RhoA/ROCK/Nox4 signaling pathway, thereby reducing early kidney damage in model rats.


Sign in / Sign up

Export Citation Format

Share Document