F231. Microstructural Changes in White Matter Associated With Alcohol Use in Early Phase Psychosis: A Diffusion Tensor Imaging (DTI) and Relaxometry Study

2018 ◽  
Vol 83 (9) ◽  
pp. S328-S329
Author(s):  
Jacob Cookey ◽  
Candice Crocker ◽  
Denise Bernier ◽  
Aaron Newman ◽  
Sherry Stewart ◽  
...  
2018 ◽  
Vol 8 (9) ◽  
pp. 567-576
Author(s):  
Jacob Cookey ◽  
Candice E. Crocker ◽  
Denise Bernier ◽  
Aaron J. Newman ◽  
Sherry Stewart ◽  
...  

2005 ◽  
Vol 46 (1) ◽  
pp. 104-109 ◽  
Author(s):  
H. Fukuda ◽  
J. Horiguchi ◽  
C. Ono ◽  
T. Ohshita ◽  
J. Takaba ◽  
...  

Purpose: To determine whether myotonic dystrophy (MyD) patients have diffusion tensor abnormalities suggestive of microstructural changes in normal‐appearing white matter (NAWM). Material and Methods: Conventional and diffusion tensor magnetic resonance images of the brain were obtained in 19 MyD patients and 19 age‐matched normal control subjects. Fractional anisotropy (FA) and mean diffusivity (MD) values were calculated in white matter lesions (WMLs) and NAWM in MyD patients and in the white matter of normal control subjects. Differences between WML and NAWM values and between MyD patient and control subject values were analyzed statistically. Results: Significantly lower FA and higher MD values were found in all regions of interest in the NAWM of MyD patients than in the white matter of control subjects ( P<0.01), as well as significantly lower FA and higher MD values in WMLs than in NAWM of MyD patients ( P<0.05). There was no significant correlation of mean FA or MD values in NAWM with patient age, age at onset, or duration of illness ( P>0.1). Conclusion: Diffusion tensor imaging analysis suggests the presence of diffuse microstructural changes in NAWM of MyD patients that may play an important role in the development of disability.


2013 ◽  
Vol 27 (2) ◽  
pp. 455-465 ◽  
Author(s):  
Mollie A. Monnig ◽  
Arvind Caprihan ◽  
Ronald A. Yeo ◽  
Charles Gasparovic ◽  
David A. Ruhl ◽  
...  

2020 ◽  
Vol 44 (3) ◽  
pp. 393-398 ◽  
Author(s):  
Ahmed Abdel Khalek Abdel Razek ◽  
Saher Ebrahiem Taman ◽  
Mohamed Ezz El Regal ◽  
Ahmed Megahed ◽  
Sherine Elzeny ◽  
...  

2004 ◽  
Vol 10 (2) ◽  
pp. 188-196 ◽  
Author(s):  
Emmanuelle Cassol ◽  
Jean-Philippe Ranjeva ◽  
Danielle Ibarrola ◽  
Claude Mékies ◽  
Claude Manelfe ◽  
...  

Our objectives were to determine the reproducibility of diffusion tensor imaging (DTI) in volunteers and to evaluate the ability of the method to monitor longitudinal changes occurring in the normal-appearing white matter (NAWM) of patients with multiple sclerosis (MS). DTI was performed three-mo nthly for one year in seven MS patients: three relapsing-remitting (RRMS), three secondary progressive (SPMS) and one relapsing SP. They were selected with a limited cerebral lesion load. Seven age- and sex-matched controls also underwent monthly examinations for three months. Diffusivity and anisotropy were quantified over the segmented whole supratentorial white matter, with the indices of trace (Tr) and fractional anisotropy (FA). Results obtained in volunteers show the reproducibility of the method. Patients had higher trace and lower anisotropy than matched controls (P B-0.0001). O ver the follow-up, both Tr and FA indicated a recovery after the acute phase in RRMS and a progressive shift towards abnormal values in SPMS. A lthough this result is not statistically significant, it suggests that DTI is sensitive to microscopic changes occurring in tissue of normal appearance in conventional images and could be useful for monitoring the course of the disease, even though it was unable to clearly distinguish between the various physiopathological processes involved.


Author(s):  
Piotr Podwalski ◽  
Krzysztof Szczygieł ◽  
Ernest Tyburski ◽  
Leszek Sagan ◽  
Błażej Misiak ◽  
...  

Abstract Diffusion tensor imaging (DTI) is an imaging technique that uses magnetic resonance. It measures the diffusion of water molecules in tissues, which can occur either without restriction (i.e., in an isotropic manner) or limited by some obstacles, such as cell membranes (i.e., in an anisotropic manner). Diffusion is most often measured in terms of, inter alia, fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD). DTI allows us to reconstruct, visualize, and evaluate certain qualities of white matter. To date, many studies have sought to associate various changes in the distribution of diffusion within the brain with mental diseases and disorders. A better understanding of white matter integrity disorders can help us recognize the causes of diseases, as well as help create objective methods of psychiatric diagnosis, identify biomarkers of mental illness, and improve pharmacotherapy. The aim of this work is to present the characteristics of DTI as well as current research on its use in schizophrenia, affective disorders, and other mental disorders.


Sign in / Sign up

Export Citation Format

Share Document