IQSEC3 deletion impairs fear memory through upregulation of ribosomal S6 kinase 1 signaling in the hippocampus

Author(s):  
Dongwook Kim ◽  
Hyeji Jung ◽  
Yoshinori Shirai ◽  
Hyeonho Kim ◽  
Jinhu Kim ◽  
...  
2005 ◽  
Vol 98 (4) ◽  
pp. 1562-1566 ◽  
Author(s):  
Troy A. Hornberger ◽  
R. D. Mateja ◽  
E. R. Chin ◽  
J. L. Andrews ◽  
K. A. Esser

The capacity for skeletal muscle to recover its mass following periods of unloading (regrowth) has been reported to decline with age. Although the mechanisms responsible for the impaired regrowth are not known, it has been suggested that aged muscles have a diminished capacity to sense and subsequently respond to a given amount of mechanical stimuli (mechanosensitivity). To test this hypothesis, extensor digitorum longus muscles from young (2–3 mo) and old (26–27 mo) mice were subjected to intermittent 15% passive stretch (ex vivo) as a source of mechanical stimulation and analyzed for alterations in the phosphorylation of stress-activated protein kinase (p38), ribosomal S6 kinase (p70S6k), and the p54 jun N-terminal kinase (JNK2). The results indicated that the average magnitude of specific tension (mechanical stimuli) induced by 15% stretch was similar in muscles from young and old mice. Young and old muscles also revealed similar increases in the magnitude of mechanically induced p38, p70S6k (threonine/serine 421/424 and threonine 389), and JNK2 phosphorylation. In addition, coincubation experiments demonstrated that the release of locally acting growth factors was not sufficient for the induction of JNK2 phosphorylation, suggesting that JNK2 was activated by a mechanical rather than a mechanical/growth factor-dependent mechanism. Taken together, the results of this study demonstrate that aging does not alter the mechanosensitivity of the p38, p70S6k, and JNK2 signaling pathways in skeletal muscle.


2013 ◽  
Vol 305 (7) ◽  
pp. H1010-H1019 ◽  
Author(s):  
Catherine L. Passariello ◽  
Marjorie Gayanilo ◽  
Michael D. Kritzer ◽  
Hrishikesh Thakur ◽  
Zoharit Cozacov ◽  
...  

Myocardial interstitial fibrosis is an important contributor to the development of heart failure. Type 3 p90 ribosomal S6 kinase (RSK3) was recently shown to be required for concentric myocyte hypertrophy under in vivo pathological conditions. However, the role of RSK family members in myocardial fibrosis remains uninvestigated. Transgenic expression of α-tropomyosin containing a Glu180Gly mutation (TM180) in mice of a mixed C57BL/6:FVB/N background induces a cardiomyopathy characterized by a small left ventricle, interstitial fibrosis, and diminished systolic and diastolic function. Using this mouse model, we now show that RSK3 is required for the induction of interstitial fibrosis in vivo. TM180 transgenic mice were crossed to RSK3 constitutive knockout ( RSK3−/−) mice. Although RSK3 knockout did not affect myocyte growth, the decreased cardiac function and mild pulmonary edema associated with the TM180 transgene were attenuated by RSK3 knockout. The improved cardiac function was consistent with reduced interstitial fibrosis in the TM180; RSK3−/− mice as shown by histology and gene expression analysis, including the decreased expression of collagens. The specific inhibition of RSK3 should be considered as a potential novel therapeutic strategy for improving cardiac function and the prevention of sudden cardiac death in diseases in which interstitial fibrosis contributes to the development of heart failure.


1997 ◽  
Vol 272 (3) ◽  
pp. 1920-1928 ◽  
Author(s):  
Lee M. Graves ◽  
Yaqin He ◽  
John Lambert ◽  
Deborah Hunter ◽  
Xiong Li ◽  
...  

2005 ◽  
Vol 280 (27) ◽  
pp. 25604-25610 ◽  
Author(s):  
Fabienne Soulet ◽  
Karine Bailly ◽  
Stéphane Roga ◽  
Anne-Claire Lavigne ◽  
François Amalric ◽  
...  

2009 ◽  
Vol 421 (1) ◽  
pp. 29-42 ◽  
Author(s):  
Juan M. García-Martínez ◽  
Jennifer Moran ◽  
Rosemary G. Clarke ◽  
Alex Gray ◽  
Sabina C. Cosulich ◽  
...  

mTOR (mammalian target of rapamycin) stimulates cell growth by phosphorylating and promoting activation of AGC (protein kinase A/protein kinase G/protein kinase C) family kinases such as Akt (protein kinase B), S6K (p70 ribosomal S6 kinase) and SGK (serum and glucocorticoid protein kinase). mTORC1 (mTOR complex-1) phosphorylates the hydrophobic motif of S6K, whereas mTORC2 phosphorylates the hydrophobic motif of Akt and SGK. In the present paper we describe the small molecule Ku-0063794, which inhibits both mTORC1 and mTORC2 with an IC50 of ∼10 nM, but does not suppress the activity of 76 other protein kinases or seven lipid kinases, including Class 1 PI3Ks (phosphoinositide 3-kinases) at 1000-fold higher concentrations. Ku-0063794 is cell permeant, suppresses activation and hydrophobic motif phosphorylation of Akt, S6K and SGK, but not RSK (ribosomal S6 kinase), an AGC kinase not regulated by mTOR. Ku-0063794 also inhibited phosphorylation of the T-loop Thr308 residue of Akt phosphorylated by PDK1 (3-phosphoinositide-dependent protein kinase-1). We interpret this as implying phosphorylation of Ser473 promotes phosphorylation of Thr308 and/or induces a conformational change that protects Thr308 from dephosphorylation. In contrast, Ku-0063794 does not affect Thr308 phosphorylation in fibroblasts lacking essential mTORC2 subunits, suggesting that signalling processes have adapted to enable Thr308 phosphorylation to occur in the absence of Ser473 phosphorylation. We found that Ku-0063794 induced a much greater dephosphorylation of the mTORC1 substrate 4E-BP1 (eukaryotic initiation factor 4E-binding protein 1) than rapamycin, even in mTORC2-deficient cells, suggesting a form of mTOR distinct from mTORC1, or mTORC2 phosphorylates 4E-BP1. Ku-0063794 also suppressed cell growth and induced a G1-cell-cycle arrest. Our results indicate that Ku-0063794 will be useful in delineating the physiological roles of mTOR and may have utility in treatment of cancers in which this pathway is inappropriately activated.


2020 ◽  
Vol 72 (11) ◽  
pp. 1536-1545
Author(s):  
Nabeel Abdulrahman ◽  
Kodappully Sivaraman Siveen ◽  
Jensa Mariam Joseph ◽  
Aisha Osman ◽  
Huseyin C. Yalcin ◽  
...  

Oncotarget ◽  
2017 ◽  
Vol 8 (22) ◽  
pp. 35761-35775 ◽  
Author(s):  
Corinna Kosnopfel ◽  
Tobias Sinnberg ◽  
Birgit Sauer ◽  
Heike Niessner ◽  
Anja Schmitt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document