Fungicidal property of active component derived from Acorus gramineus rhizome against phytopathogenic fungi

2007 ◽  
Vol 98 (6) ◽  
pp. 1324-1328 ◽  
Author(s):  
H.S. Lee
2008 ◽  
Vol 63 (7-8) ◽  
pp. 503-506 ◽  
Author(s):  
Yeon-Suk Lee ◽  
Junheon Kim ◽  
Sang-Gil Lee ◽  
Sang-Chul Shin ◽  
Il-Kwon Park

Analysis by gas chromatography-mass spectrometry led to the identification of 26 compounds in Acorus gramineus essential oil. The antifungal activity of the identified compounds was tested singularly by using standard compounds. Allyl isothiocyanate and cis-asarone showed inhibition rates of 100% against P. cactorum at 28 mg/l air. In a test with C. parasitica and F. circinatum, allyl isothiocyante and cis-asarone showed moderate activity at 28 mg/l air.


1970 ◽  
Vol 24 (03/04) ◽  
pp. 352-355 ◽  
Author(s):  
P Fantl

SummaryThe blood plasma factor XIII (fibrin stabilizing factor) is inactivated by mercuric ions and can be reactivated by serum - or plasma albumin of which the active component is mercaptalbumin. A relation between mercaptalbumin concentration and factor XIII activity is pointed out.


2018 ◽  
Vol 3 (1) ◽  
pp. 40-44 ◽  
Author(s):  
Karim Mohammed Xider

The current work the effect of Actara insecticide belongs to chemical family Neonicotinoid. The active component of thiamethoxam in three concentrations: 0.750 ppm, 1.5 ppm and 2.25ppm   on adult house fly salivary glands. Histopathological and morphological effects revealed important alterations produced by this insecticide in histological and morphology of the adult house fly gland tissue categorized by increasing gland duct lumen diameter. These alterations are possibly related with excretion function of salivary gland might be accountable for removing this insecticide. Results show thiamethoxam is a powerful insecticide that performances histologically in salivary glant tissue, triggering alterations in the glands  form, cytoplasm  with extreme vacuolation ,disruption cell membrane, obvious disorganization tissues cells, terminating in progressive deteriorating phase with changes in nucleus glandular cell's, such alterations occurred together in its size and form of gland, disintegration of nucleus, and presence of apoptosis(fragmentation) nucleus, accelerating the process of glandular degeneration ,and interfering with feeding process of house fly particularly when the peak concentration of  insecticide  was used.


2019 ◽  
Vol 6 (02) ◽  
Author(s):  
AJAY KUMAR SINGH ◽  
AKHILESH KUMAR PANDEY

Natural phytotoxins of fungi are great source for the discovery of new herbicide and its offer a benign and eco-friendly alternative to manage weed. Thus, this study aimed to select potential fungi with potent herbicidal activity for control ofweeds. In the present study, various phytopathogenic fungi were isolated from infected tissues of various weeds and evaluated againstXanthium strumarium, a problematic monocotyledonous weed of open lands, agriculture, horticulture and forests. Herbicidal potential of Cell Free Culture Filtrate (CFCF) of strains ofPhoma herbarum (FGCCW#18, FGCCW#43) Fusariummonilifromecoded as FGCCW#35 and Fusarium roseum coded as FGCCW#55againstXanthium strumariumwere evaluated by seedling and shoot cut bioassays. Maximum mortalities of shoots, seedlings and phytotoxic damage were obtainedfrom28 day sold cell free culture filtrate (CFCF) of FGCCW#18 at 100% concentration. Significant reduction in biological contents i.e. photosynthetic pigment and protein was observed in the host weed on treatment with the CFCF as determined by detached leaf bioassay. Phytotoxic damage such as severe wilting, chlorosis, necrosis and complete collapse of the entire parts of the weed were also noticed due to CFCF application.


1995 ◽  
Vol 60 (4) ◽  
pp. 568-575
Author(s):  
Karel Sporka ◽  
Jiří Hanika ◽  
Vladimír Jůn

Preparation of skeletal Co-Mo catalysts by controlled impregnation of aluminosilicate skeletons containing deposited gamma-alumina with aqueous solutions of active component precursors has been investigated. The activity of the laboratory catalysts in gas oil hydrodesulfurization has been determined. Kinetics of impregnation of skeletal supports, the effect of their type, and the dependence of catalyst activity on the content of cobalt and molybdenum sulfides are reported. HDS skeletal catalysts prepared were compared with the extruded types. It was found that skeletal HDS catalysts show the higher activity (related to the content of alumina and Co-Mo sulfides) than the extruded ones due to the less significant effect of internal diffusion. However, if the activity is related to the same volume of catalyst bed, the activity of skeletal catalysts is only one fourth of that of the extruded types.


1998 ◽  
Vol 63 (11) ◽  
pp. 1945-1953 ◽  
Author(s):  
Jiří Hanika ◽  
Karel Sporka ◽  
Petr Macoun ◽  
Vladimír Kysilka

The activity of ruthenium, palladium, and nickel catalysts for the hydrogenation of 1,2-dihydroacenaphthylene in cyclohexane solution was studied at temperatures up to 180 °C and pressures up to 8 MPa. The GC-MS technique was used to identify most of the perhydroacenaphthylene stereoisomers, whose fractions in the product were found dependent on the nature of the active component of the catalyst. The hydrogenation was fastest on the palladium catalyst (3% Pd/C). The nickel catalyst Ni-NiO/Al2O3, which is sufficiently active also after repeated use, can be recommended for practical application. The activation energy of 1,2-dihydroacenaphthylene hydrogenation using this catalyst is 17 kJ/mol, the reaction order with respect to hydrogen is unity.


2021 ◽  
Vol 7 (5) ◽  
pp. 337
Author(s):  
Daniel Peterson ◽  
Tang Li ◽  
Ana M. Calvo ◽  
Yanbin Yin

Phytopathogenic Ascomycota are responsible for substantial economic losses each year, destroying valuable crops. The present study aims to provide new insights into phytopathogenicity in Ascomycota from a comparative genomic perspective. This has been achieved by categorizing orthologous gene groups (orthogroups) from 68 phytopathogenic and 24 non-phytopathogenic Ascomycota genomes into three classes: Core, (pathogen or non-pathogen) group-specific, and genome-specific accessory orthogroups. We found that (i) ~20% orthogroups are group-specific and accessory in the 92 Ascomycota genomes, (ii) phytopathogenicity is not phylogenetically determined, (iii) group-specific orthogroups have more enriched functional terms than accessory orthogroups and this trend is particularly evident in phytopathogenic fungi, (iv) secreted proteins with signal peptides and horizontal gene transfers (HGTs) are the two functional terms that show the highest occurrence and significance in group-specific orthogroups, (v) a number of other functional terms are also identified to have higher significance and occurrence in group-specific orthogroups. Overall, our comparative genomics analysis determined positive enrichment existing between orthogroup classes and revealed a prediction of what genomic characteristics make an Ascomycete phytopathogenic. We conclude that genes shared by multiple phytopathogenic genomes are more important for phytopathogenicity than those that are unique in each genome.


Sign in / Sign up

Export Citation Format

Share Document