Structural characteristics and antioxidant activities of the extracellular polysaccharides produced by marine bacterium Edwardsiella tarda

2010 ◽  
Vol 101 (12) ◽  
pp. 4729-4732 ◽  
Author(s):  
Shoudong Guo ◽  
Wenjun Mao ◽  
Yin Han ◽  
Xiaohua Zhang ◽  
Chunli Yang ◽  
...  
Author(s):  
Ch. Ravi Teja ◽  
Abraham P. Karlapudi ◽  
Neeraja Vallur ◽  
K. Mamatha ◽  
D. John Babu ◽  
...  

Abstract Background Extracellular polysaccharides (ECPs) produced by biofilm-producing marine bacterium have great applications in biotechnology, pharmaceutical, food engineering, bioremediation, and bio-hydrometallurgy industries. The ECP-producing strain was identified as Acinetobacter indicus M6 species by 16S rDNA analysis. The polymer produced by the isolate was quantified and purified and chemically analyzed, and antioxidant activities have been studied. The face-centered central composite design (FCCCD) was used to design the model. Results The results have clearly shown that the ECP was found to be endowed with significant antioxidative activities. The ECP showed 59% of hydroxyl radical scavenging activity at a concentration of 500 μg/mL, superoxide radical scavenging activity (72.4%) at a concentration of 300 μg/mL, and DPPH˙ radical scavenging activity (72.2%) at a concentration of 500 μg/mL, respectively. Further, HPLC and GC-MS results showed that the isolated ECP was a heteropolymer composed of glucose as a major monomer, and mannose and glucosamine were minor monomers. Furthermore, the production of ECP by Acinetobacter indicus M6 was increased through optimization of nutritional variables, namely, glucose, yeast extract, and MgSO4 by “Response Surface Methodology”. Moreover the production of ECP reached to 2.21 g/L after the optimization of nutritional variables. The designed model is statistically significant and is indicated by the R2 value of 0.99. The optimized medium improved the production of ECP and is two folds higher in comparison with the basal medium. Conclusions Acinetobacter indicus M6 bacterium produces a novel and unique extracellular heteropolysaccharide with highly efficient antioxidant activity. GC-MS analyses elucidated the presence of quite uncommon (1→4)-linked glucose, (1→4)-linked mannose, and (→4)-GlcN-(1→) glycosidic linkages in the backbone. The optimized medium improved the production of ECP and is two folds higher in comparison with the basal medium. The newly optimized medium could be used as a promising alternative for the overproduction of ECP.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xuemei Ma ◽  
Jiayi Yu ◽  
Jing Jing ◽  
Qian Zhao ◽  
Liyong Ren ◽  
...  

AbstractPectin is a kind of natural and complex carbohydrates which is extensively used in food, chemical, cosmetic, and pharmaceutical industries. Fresh sunflower (Helianthus annuus L.) heads were utilized as a novel source of pectin extracted by ammonium oxalate. The conditions of the extraction process were optimized implementing the response surface methodology. Under optimal extraction parameters (extraction time 1.34 h, liquid–solid ratio 15:1 mL/g, ammonium oxalate concentration 0.76% (w/v)), the maximum experimental yield was 7.36%. The effect of spray-drying and freeze-drying on the physiochemical properties, structural characteristics, and antioxidant activities was investigated by FT-IR spectroscopy, high performance size exclusion chromatography, and X-ray diffraction. The results showed freeze-drying lead to decrease in galacturonic acid (GalA) content (76.2%), molecular weight (Mw 316 kDa), and crystallinity. The antioxidant activities of pectin were investigated utilizing the in-vitro DPPH and ABTS radical-scavenging systems. This study provided a novel and efficient extraction method of sunflower pectin, and confirmed that different drying processes had an effect on the structure and properties of pectin.


2009 ◽  
Vol 57 (19) ◽  
pp. 9293-9298 ◽  
Author(s):  
Guoxiang Jiang ◽  
Yueming Jiang ◽  
Bao Yang ◽  
Chunyan Yu ◽  
Rong Tsao ◽  
...  

2013 ◽  
Vol 92 (1) ◽  
pp. 758-764 ◽  
Author(s):  
Guoxiang Jiang ◽  
Lingrong Wen ◽  
Feng Chen ◽  
Fuwang Wu ◽  
Sen Lin ◽  
...  

2021 ◽  
pp. 1-10
Author(s):  
Zipora Tietel ◽  
Shirin Kahremany ◽  
Guy Cohen ◽  
Navit Ogen-Shtern

Abstract Jojoba, Simmondsia chinensis (Link) C.K. Schneider is an evergreen shrub widely grown in Israel, the Middle East, South America, Africa, India and Australia used as an agricultural crop for commercial purposes and as a source of its non-edible natural wax. It is widely used in pharmaceutics and cosmetic formulation due to its unique structural characteristics and beneficial health effects. In addition, extensive work has been published on the plant’s health-promoting activities, ranging from antioxidant activities to the treatment of cancer. Being a rich source of natural liquid wax, the majority of research regarding jojoba focuses on its applications, as well as on the ability to exploit the residual plant materials obtained in its production. To date, several potent phytochemicals have been attributed to its medicinal properties, e.g. simmondsin and phenolic compounds. The current review emphasizes the evidence-based medicinal qualities of the wax and plant extracts and highlights the gaps of knowledge in these research areas and the importance of acquiring additional understanding of jojoba distinctive traits.


2020 ◽  
Author(s):  
Wenshuang Wang ◽  
Cédric Przybylski ◽  
Xiaojuan Cai ◽  
Chrystel Lopin-Bon ◽  
Runmiao Jiao ◽  
...  

Recently, a novel CS/DS 4-O-endosulfatase was identified from a marine bacterium and its catalytic mechanism was investigated further (Wang, W., et.al (2015) J. Biol. Chem. 290, 7823-7832; Wang, S., et.al (2019) Front. Microbiol. 10:1309). In the study herein, we provide new insight about the structural characteristics of substrate which determine the activity of this enzyme. The substrate specificities of the 4-O-endosulfatase were probed by using libraries of structure-defined CS/DS oligosacccharides issued from synthetic and enzymatic sources. We found that this 4-O-endosulfatase effectively remove the 4-O-sulfate of disaccharide sequences GlcUAβ1-3GalNAc(4S) or GlcUAβ1-3GalNAc(4S,6S) in all tested hexasaccharides. The sulfated GalNac residue is resistant to the enzyme when adjacent uronic residues are sulfated as shown by the lack of enzymatic desulfation of GlcUAβ1-3GalNAc(4S) connected to a disaccharide GlcUA(2S)β1-3GalNAc(6S) in an octasaccharide. The 3-O-sulfation of GlcUA was also shown to hinder the action of this enzyme. The 4-O-endosulfatase exhibited an oriented action from the reducing to the non-reducing whatever the saturation or not of the non-reducing end. Finally, the activity of the 4-O-endosulfatase decreases with the increase of substrate size. With the deeper understanding of this novel 4-O-endosulfatase, such chondroitin sulfate (CS)/dermatan sulfate (DS) sulfatase is a useful tool for exploring the structure-function relationship of CS/DS.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9077
Author(s):  
Zizhong Tang ◽  
Caixia Zhou ◽  
Yi Cai ◽  
Yujia Tang ◽  
Wenjun Sun ◽  
...  

Background Amaranthus hybridus L. is an annual, erect or less commonly ascending herb that is a member of the Amaranthaceae family. Polysaccharides extracted from traditional Chinese medicines may be effective substances with antioxidant activity. Methods In this study, we isolated crude polysaccharides from A. hybridus (AHP-M) using microwave-assisted extraction. Then, the AHP-M was purified by chromatography with DEAE-32 cellulose, and two fractions, AHP-M-1 and AHP-M-2, were obtained. The structural characteristics of AHP-M-1 and AHP-M-2 were investigated, and their antioxidant activities were analyzed in vitro. Results We found that the monosaccharide composition of AHP-M-1 was different from that of AHP-M-2. The molecular weights of AHP-M-1 and AHP-M-2 were 77.625 kDa and 93.325 kDa, respectively. The results showed that the antioxidant activity of AHP-M-2 was better than that of AHP-M-1. For AHP-M-2, the DPPH radical scavenging rate at a concentration of 2 mg/mL was 78.87%, the hydroxyl radical scavenging rate was 39.34%, the superoxide anion radical scavenging rate was 80.2%, and the reduction ability of Fe3+ was approximately 0.90. The total antioxidant capacity per milligram of AHP-M-2 was 6.42, which was higher than that of Vitamin C (Vc). Conclusion The in vitro test indicated that AHP-M-1 and AHP-M-2 have good antioxidant activity, demonstrating that A. hybridus L. polysaccharide has immense potential as a natural antioxidants.


Sign in / Sign up

Export Citation Format

Share Document