scholarly journals Production of vinyl derivatives from alkaline hydrolysates of corn cobs by recombinant Escherichia coli containing the phenolic acid decarboxylase from Lactobacillus plantarum CECT 748T

2012 ◽  
Vol 117 ◽  
pp. 274-285 ◽  
Author(s):  
José Manuel Salgado ◽  
Raquel Rodríguez-Solana ◽  
José Antonio Curiel ◽  
Blanca de las Rivas ◽  
Rosario Muñoz ◽  
...  
Catalysts ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 634 ◽  
Author(s):  
Lulu Li ◽  
Xiang Wu ◽  
Liangkun Long ◽  
Shaojun Ding

Bioproduction of vinylphenol derivatives, such as 4-vinylguaiacol (4-VG) and 4-vinylphenol (4-VP), from 4-hydroxycinnamic acids, such as ferulic acid (FA) and p-coumaric acid (pCA), employing whole cells expressing phenolic acid decarboxylases (PAD) as a biocatalyst has attracted much attention in recent years. However, the accumulation of 4-VG or 4-VP in the cell may cause high cytotoxicity to Escherichia coli (E. coli) and consequently cell death during the process. In this study, we firstly report the functional display of a phenolic acid decarboxylase (BLPAD) from Bacillus licheniformis using a GDSL autotransporter from Pseudomonas putida on the cell surface of E. coli. Expression and localization of BLPAD on E. coli were verified by SDS-PAGE and protease accessibility. The PelB signal peptide is more effective in guiding the translocation of BLPAD on the cell surface than the native signal peptide of GDSL, and the cell surface displaying BLPAD activity reached 19.72 U/OD600. The cell surface displaying BLPAD showed good reusability and retained 63% of residual activity after 7 cycles of repeated use. In contrast, the residual activity of the intracellular expressing cells was approximately 11% after 3 cycles of reuse. The molar bioconversion yields of 72.6% and 80.4% were achieved at the concentration of 300 mM of FA and pCA in a biphasic toluene/Na2HPO4–citric acid buffer system, respectively. Its good reusability and efficient catalysis suggested that the cell surface displaying BLPAD can be used as a whole-cell biocatalyst for efficient production of 4-VG and 4-VP.


2004 ◽  
Vol 70 (4) ◽  
pp. 2146-2153 ◽  
Author(s):  
Jérôme Gury ◽  
Lise Barthelmebs ◽  
Ngoc Phuong Tran ◽  
Charles Diviès ◽  
Jean-François Cavin

ABSTRACT Lactobacillus plantarum displays a substrate-inducible padA gene encoding a phenolic acid decarboxylase enzyme (PadA) that is considered a specific chemical stress response to the inducing substrate. The putative regulator of padA was located in the padA locus based on its 52% identity with PadR, the padA gene transcriptional regulator of Pediococcus pentosaceus (L. Barthelmebs, B. Lecomte, C. Diviès, and J.-F. Cavin, J. Bacteriol. 182:6724-6731, 2000). Deletion of the L. plantarum padR gene clearly demonstrates that the protein it encodes is the transcriptional repressor of divergently oriented padA. The padR gene is cotranscribed with a downstream open reading frame (ORF1), the product of which may belong to a group of universal stress proteins (Usp). The padR deletion mutant overexpressed padA constitutively, and the padA promoter appears to be tightly regulated in this bacterium. Gel mobility shift assays using the padA gene promoter region and purified PadR expressed in Escherichia coli indicated that operator DNA binding by PadR was not eliminated by addition of p-coumarate. Gel mobility shift assays using partially purified extracts of native PadR protein from both phenolic acid-induced and noninduced L. plantarum cells demonstrate that inactivation of PadR by phenolic acids requires the integrity of L. plantarum and mediation by a specific protein absent in E. coli.


2010 ◽  
Vol 150 ◽  
pp. 320-320
Author(s):  
José Manuel Salgado ◽  
Noelia Rodríguez ◽  
Sandra Cortés ◽  
José Antonio Curiel ◽  
Rosario Múñoz ◽  
...  

2003 ◽  
Vol 51 (17) ◽  
pp. 4909-4915 ◽  
Author(s):  
Annél Smit ◽  
Ricardo R. Cordero Otero ◽  
Marius G. Lambrechts ◽  
Isak S. Pretorius ◽  
Pierre van Rensburg

Sign in / Sign up

Export Citation Format

Share Document