Kinetic characteristics and modeling of microalgae Chlorella vulgaris growth and CO2 biofixation considering the coupled effects of light intensity and dissolved inorganic carbon

2016 ◽  
Vol 206 ◽  
pp. 231-238 ◽  
Author(s):  
Hai-Xing Chang ◽  
Yun Huang ◽  
Qian Fu ◽  
Qiang Liao ◽  
Xun Zhu
1997 ◽  
Vol 75 (2) ◽  
pp. 274-283 ◽  
Author(s):  
Qinglin Li ◽  
David Thomas Canvin

Mass spectrometric measurements of 16O2, 18O2, and 13CO2 were used to measure the rates of gross O2 evolution, O2 uptake, and CO2 assimilation in relation to light intensity, temperature, pH, and O2 concentration by air-grown cells of the cyanobacterium Synechococcus UTEX 625. CO2 fixation and O2 photoreduction increased with increased light intensity and, although CO2 fixation was saturated at 250 μmol ∙ m−2 ∙ s−1, O2 photoreduction was not saturated until about 550 μmol ∙ m−2 ∙ s−1. At high light intensity addition of inorganic carbon to the cells stimulated O2 photoreduction 2-fold when CO2, fixation was allowed and 5-fold when CO2, fixation was inhibited with iodoacetamide. The ability of O2, to act as an acceptor of photosynthetically generated reducing power was dependent upon the O2 concentration, and the substrate concentration required for half maximum rate (K½(O2)) was 53.2 ± 4.2 μM (mean ± SD, n = 3). The Q10 for oxygen photoreduction was about 2. A certain amount (10%) of O2 appeared to be required for maximum photosynthesis, as photosynthesis was inhibited under anaerobic conditions, especially at high light intensity. The point of inhibition is unknown but it seemed unlikely to be on CO2 transport or the concentration of intracellular dissolved inorganic carbon (Ci), as the rate of initial CO2 transport was enhanced and the intracellular Q1 pool increased in size under anaerobic conditions. Key words: cyanobacteria, photosynthesis, Ci concentrating mechanism, inorganic carbon pool, O2 photoreduction, electron transport, temperature.


Plants ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 31 ◽  
Author(s):  
Maria N. Metsoviti ◽  
George Papapolymerou ◽  
Ioannis T. Karapanagiotidis ◽  
Nikolaos Katsoulas

In this research, the effect of solar irradiance on Chlorella vulgaris cultivated in open bioreactors under greenhouse conditions was investigated, as well as of ratio of light intensity in the 420–520 nm range to light in the 580–680 nm range (I420–520/I580–680) and of artificial irradiation provided by red and white LED lamps in a closed flat plate laboratory bioreactor on the growth rate and composition. The increase in solar irradiance led to faster growth rates (μexp) of C. vulgaris under both environmental conditions studied in the greenhouse (in June up to 0.33 d−1 and in September up to 0.29 d−1) and higher lipid content in microalgal biomass (in June up to 25.6% and in September up to 24.7%). In the experiments conducted in the closed bioreactor, as the ratio I420–520/I580–680 increased, the specific growth rate and the biomass, protein and lipid productivities increased as well. Additionally, the increase in light intensity with red and white LED lamps resulted in faster growth rates (the μexp increased up to 0.36 d−1) and higher lipid content (up to 22.2%), while the protein, fiber, ash and moisture content remained relatively constant. Overall, the trend in biomass, lipid, and protein productivities as a function of light intensity was similar in the two systems (greenhouse and bioreactor).


Sign in / Sign up

Export Citation Format

Share Document