Pursuing a proxy for carbon cycling in the temperate North Atlantic: Investigation of the utility of Arctica islandica shell carbonate to millennial-scale dissolved inorganic carbon reconstructions

2011 ◽  
Author(s):  
Erin Beirne
2013 ◽  
Vol 10 (8) ◽  
pp. 14515-14537
Author(s):  
V. Racapé ◽  
N. Metzl ◽  
C. Pierre ◽  
G. Reverdin ◽  
P. D. Quay ◽  
...  

Abstract. This study introduces for the first time the δ13CDIC seasonality in the North Atlantic Subpolar Gyre (NASPG) using δ13CDIC data obtained between 2005 and 2012 with Dissolved Inorganic Carbon (DIC) and nutrient observations. On the seasonal scale, the NASPG is characterized by higher δ13CDIC values during summer than during winter with seasonal amplitude of 0.77‰. This is attributed to biological activity in summer and to deep remineralization process during winter convection. During all seasons, we observed a strong linear relationship between δ13CDIC and DIC. Results also revealed a negative anomaly for DIC and nutrients in August 2010 that could be explained by a coccolithophore bloom associated to a warming up to +2 °C. Winter data also showed a large decrease in δ13CDIC associated with an increase in DIC between 2006 and 2011–2012 but with observed time rates (−0.04‰ yr−1and +1.7 μmol kg−1 yr−1) much larger than the expected anthropogenic signal.


2018 ◽  
Author(s):  
Robert T. Letscher ◽  
Tracy A. Villareal

Abstract. Summertime drawdown of dissolved inorganic carbon in the absence of measurable nutrients from the mixed layer and subsurface negative preformed nitrate (preNO3) anomalies observed for the ocean's subtropical gyres are two biogeochemical phenomena that have thus far eluded complete description. Many processes are thought to contribute including biological nitrogen fixation, lateral nutrient transport, carbon overconsumption or non-Redfield C : N : P organic matter cycling, heterotrophic nutrient uptake, and the actions of vertically migrating phytoplankton. Here we investigate the seasonal formation rates and potential contributing mechanisms for negative preformed nitrate anomalies (oxygen consumption without stoichiometric nitrate release) in the subsurface and positive preformed nitrate anomalies (oxygen production without stoichiometric nitrate drawdown) in the euphotic zone at the subtropical ocean time series stations ALOHA in the North Pacific and BATS in the North Atlantic. Non-Redfield −O2 : N stoichiometry for dissolved organic matter (DOM) remineralization is found to account for up to ~ 15 mmol N m−2 yr−1 of negative preNO3 anomaly formation at both stations. Residual negative preNO3 anomalies in excess of that which can be accounted for by non-Redfield DOM cycling are found to accumulate at a rate of ~ 32–46 mmol N m−2 yr−1 at station ALOHA and ~ 46–87 mmol N m−2 yr−1 at the BATS station. These negative anomaly formation rates are in approximate balance with positive preNO3 anomaly formation rates from the euphotic zone located immediately above the nutricline in the water column. Cycling of transparent exopolymer particles (TEP) and heterotrophic nitrate uptake can contribute to the formation of these preNO3 anomalies, however a significant fraction, estimated at ~ 50–95 %, is unexplained by the sum of these processes. Vertically migrating phytoplankton possess the necessary nutrient acquisition strategy and biogeochemical signature to quantitatively explain both the residual negative and positive preNO3 anomalies as well as the mixed layer dissolved inorganic carbon drawdown at stations ALOHA and BATS. TEP production by the model Rhizosolenia mat system could provide accelerated vertical transport of TEP as well as link the three processes together. Phytoplankton vertical migrators, although rare and easily overlooked, may play a large role in subtropical ocean nutrient cycling and the biological pump.


2015 ◽  
Vol 42 (22) ◽  
pp. 9853-9861 ◽  
Author(s):  
Patricia Zunino ◽  
Pascale Lherminier ◽  
Herlé Mercier ◽  
Xose A. Padín ◽  
Aida F. Ríos ◽  
...  

2016 ◽  
Author(s):  
Meike Becker ◽  
Nils Andersen ◽  
Helmut Erlenkeuser ◽  
Matthew. P. Humphreys ◽  
Toste Tanhua ◽  
...  

Abstract. The stable carbon isotope composition of dissolved inorganic carbon (δ13C-DIC) can be used to quantify fluxes within the carbon system. For example, knowing the δ13C-DIC signature of the inorganic carbon pool can help to describe the exchange between ocean and atmosphere as well as the amount of anthropogenic carbon in the water column. The measurements can also be used for evaluating modeled carbon fluxes, for making basin wide estimates, studying seasonal and interannual variability or decadal trends in interior ocean biogeochemistry. For all these purposes, it is not only important to have a sufficient amount of data, but these data must also be internally consistent and of high quality. In this study, we present a δ13C-DIC dataset for the North Atlantic, which has undergone secondary quality control. The data originate from oceanographic research cruises between 1981 and 2012. During a primary quality control step based on simple range tests obviously bad data were flagged. In a second quality control step, biases between measurements from different cruises were quantified through a crossover analysis using nearby data of the respective cruises and absolute values of biased cruises were adjusted in the data product. the crossover analysis was possible for 22 of the 29 cruises in our dataset and adjustments were applied to 10 of these. The internal accuracy of this dataset is 0.017 ‰. The dataset is available via CDIAC at http://cdiac.ornl.gov/oceans/ndp_096/NAC13v1.html, doi:10.3334/CDIAC/OTG.NAC13v1.


2016 ◽  
Vol 13 (4) ◽  
pp. 1163-1177 ◽  
Author(s):  
Kristen M. Krumhardt ◽  
Nicole S. Lovenduski ◽  
Natalie M. Freeman ◽  
Nicholas R. Bates

Abstract. As environmental conditions evolve with rapidly increasing atmospheric CO2, biological communities will change as species reorient their distributions, adapt, or alter their abundance. In the surface ocean, dissolved inorganic carbon (DIC) has been increasing over the past several decades as anthropogenic CO2 dissolves into seawater, causing acidification (decreases in pH and carbonate ion concentration). Calcifying phytoplankton, such as coccolithophores, are thought to be especially vulnerable to ocean acidification. How coccolithophores will respond to increasing carbon input has been a subject of much speculation and inspired numerous laboratory and mesocosm experiments, but how they are currently responding in situ is less well documented. In this study, we use coccolithophore (haptophyte) pigment data collected at the Bermuda Atlantic Time-series Study (BATS) site together with satellite estimates (1998–2014) of surface chlorophyll and particulate inorganic carbon (PIC) as a proxy for coccolithophore abundance to show that coccolithophore populations in the North Atlantic subtropical gyre have been increasing significantly over the past 2 decades. Over 1990–2012, we observe a 37 % increase in euphotic zone-integrated coccolithophore pigment abundance at BATS, though we note that this is sensitive to the period being analyzed. We further demonstrate that variability in coccolithophore chlorophyll a here is positively correlated with variability in nitrate and DIC (and especially the bicarbonate ion) in the upper 30 m of the water column. Previous studies have suggested that coccolithophore photosynthesis may benefit from increasing CO2, but calcification may eventually be hindered by low pHT (< 7.7). Given that DIC has been increasing at BATS by  ∼ 1.4 µmol kg−1 yr−1 over the period of 1991–2012, we speculate that coccolithophore photosynthesis and perhaps calcification may have increased in response to anthropogenic CO2 input.


2016 ◽  
Vol 13 (16) ◽  
pp. 4659-4671 ◽  
Author(s):  
William J. Burt ◽  
Helmuth Thomas ◽  
Lisa A. Miller ◽  
Mats A. Granskog ◽  
Tim N. Papakyriakou ◽  
...  

Abstract. The distributions of carbonate system parameters in Hudson Bay, which not only receives nearly one-third of Canada's river discharge but is also subject to annual cycles of sea-ice formation and melt, indicate that the timing and magnitude of freshwater inputs play an important role in carbon biogeochemistry and acidification in this unique Arctic ecosystem. This study uses basin-wide measurements of dissolved inorganic carbon (DIC) and total alkalinity (TA), as well as stable isotope tracers (δ18O and δ13CDIC), to provide a detailed assessment of carbon cycling processes within the bay. Surface distributions of carbonate parameters reveal the particular importance of freshwater inputs in the southern portion of the bay. Based on TA, we surmise that the deep waters in the Hudson Bay are largely of Pacific origin. Riverine TA end-members vary significantly both regionally and with small changes in near-surface depths, highlighting the importance of careful surface water sampling in highly stratified waters. In an along-shore transect, large increases in subsurface DIC are accompanied by equivalent decreases in δ13CDIC with no discernable change in TA, indicating a respiratory DIC production on the order of 100 µmol kg−1 DIC during deep water circulation around the bay.


Sign in / Sign up

Export Citation Format

Share Document