scholarly journals Effects of porous carrier size on biofilm development, microbial distribution and nitrogen removal in microaerobic bioreactors

2017 ◽  
Vol 234 ◽  
pp. 360-369 ◽  
Author(s):  
Muhammad Ahmad ◽  
Sitong Liu ◽  
Nasir Mahmood ◽  
Asif Mahmood ◽  
Muhammad Ali ◽  
...  
2010 ◽  
Vol 62 (8) ◽  
pp. 1965-1965
Author(s):  
S. Park ◽  
J. Lee ◽  
J. Park ◽  
I. Byun ◽  
T. Park ◽  
...  

Publisher‘s note. We regret that the published version of this article erroneously denoted the first author as corresponding author; in fact the formal corresponding author of this paper is Professor Taeho Lee, whose address is repeated below.


2007 ◽  
Vol 55 (8-9) ◽  
pp. 107-114 ◽  
Author(s):  
C.T.M.J. Frijters ◽  
M. Silvius ◽  
J. Fischer ◽  
R. Haarhuis ◽  
R. Mulder

The airlift reactor technology has been successfully applied at full scale for both COD and nitrogen removal. In this study, the results of the biofilm development and biological performance of two full scale reactors are discussed. At Paulaner Brewery in Munich, the airlift reactor was applied for COD and ammonia removal of anaerobically treated wastewater. In the other case the airlift reactor was applied as a pretreatment of nitrogen removal by the Anammox process. Water from a Tannery company in Lichtenvoorde in the Netherlands, The Hulshof Royal Dutch Tanneries, was pretreated anaerobically for COD removal and aerobically to remove the sulphides as sulphur. In an airlift reactor the ammonia was partially oxidised to nitrite. In both cases the granular biomass developed well; the concentrations amounted to 250 ml/L and 500 ml/L respectively. In the first case, 4 kg/m3/day of COD was removed, the soluble concentration of COD was less than 250 mg/L. The nitrification to nitrate was nearly complete and amounted to 0.5 kg NH4-N/m3/day. In the second application, 50% of the ammonia (on average 0.45 kg N/m3/d) was nitrified to nitrite. This process was easily controlled by regulating the amount of air according to the nitrite and ammonia concentrations in the effluent. It can be concluded that in both cases the particular processes were very stable and easy to operate.


2021 ◽  
Author(s):  
Supaporn Phanwilai ◽  
Pongsak Noophan ◽  
Chi-Wang Li ◽  
Kwang-Ho Choo

Abstract Full-scale anaerobic, anoxic and aerobic (A2O) process is used worldwide for biological nutrient removal (BNR). However, operation parameters for nitrogen removals and information of microbial communities related to nitrogen removal in full-scale A2O wastewater treatment plants (WWTPs) having low and high COD/TN ratios are not available. Based on the analysis of four full-scale A2O WWTPs, it is suggested that maintaining longer SRT of ≥ 30 day and DO of ≥ 0.9±0.2 mg-O2 L-1 is needed to improve nitrogen removal efficiency under low COD/TN ratio (≤ 3.7). On other hand, at high COD/TN ratio (≥ 4.2), DO level of ≥ 2.6 mg-O2 /L and typical SRT of 19‒ 25 days would be suggested. It was confirmed that phosphorus removal efficiency significantly improved under BOD/TP ratio of > 20 for A2O process in these full-scale WWTP. Microbial distribution analysis showed that ammonia-oxidizing archaea (AOA) was abundant under conditions of low DO level, longer SRT, high temperature and low COD/TN ratio (≤ 3.7). Nitrosomonas sp. are mostly found in aerobic tank of full-scale A2O WWTPs. However, abundances of Nitrosomonas sp. are proportional to DO and NH4+ concentrations for WWTPs with high COD/TN ratio. Nitrosospira sp. are only found under operating condition of longer SRT for WWTPs with low COD/TN ratio. Abundances of Nitrobacter sp. are proportional to DO concentration and temperature rather than abundance of Nitrospira sp. Predominance of nosZ-type denitrifiers were found at low COD/TN ratio. Abundance of denitrifiers by using nirS genes was over abundance of denitrifiers by using nirK genes at high COD/TN ratios WWTPs.


2009 ◽  
Vol 60 (9) ◽  
pp. 2405-2412 ◽  
Author(s):  
J. H. Hwang ◽  
N. Cicek ◽  
J. A. Oleszkiewicz

Efficient gas delivery and biofilm development on membrane fibers in a membrane biofilm reactor (MBfR) would be well suited to autotrophic nitrification and denitrification using hydrogen. Total nitrogen removal in a two-step MBfR system incorporating sequential nitrification and hydrogen-driven autotrophic denitrification was investigated in order to achieve nitrogen removal by autotrophic bacteria alone. This study also aimed at the long-term stable operation, which proved difficult in previous studies due to excessive biofilm accumulation in autotrophic denitrification systems. Consecutive operation of nitrification and autotrophic denitrification lasted 230 days. Average specific nitrification rate of 1.87 g N/m2 d was achieved and the performance was very stable throughout the experimental periods. Nitrification performance from this study showed comparable rates to previous studies although this work was conducted at slightly lower temperature. Batch tests confirmed the presence of nitrifiers from the effluent of the nitrification reactor, which reattached to the biofilm in the denitrification reactor leading to further nitrification. Performance of autotrophic denitrification was maintained stably throughout the experimental periods, however biofilm control by nitrogen sparging was required for process stability. Average specific denitrification rate of 1.41 g N/m2 d and a maximum specific denitrification rate of 2.04 g N/m2 d was maintained. This study showed that, with an appropriate biofilm control plan, stable long-term operation of a fully autotrophic MBfR system for total nitrogen removal was possible without major membrane cleaning procedures.


2011 ◽  
Vol 64 (5) ◽  
pp. 1137-1141 ◽  
Author(s):  
Guenter Langergraber ◽  
Alexander Pressl ◽  
Klaus Leroch ◽  
Roland Rohrhofer ◽  
Raimund Haberl

In the first two years of operation a nitrogen removal efficiency of 53% and a high average elimination rate of 1,000 g N m−2 yr−1 could be observed for a two-stage vertical flow (VF) constructed wetland (CW) system. The two-stage system consists of two VF beds with intermittent loading operated in series, each stage having a surface area of 10 m2. The first stage uses sand with a grain size of 2–3.2 mm for the 50 cm main layer and has a drainage layer that is impounded; the second stage sand with a grain size of 0.06–4 mm and a conventional drainage layer (with free drainage). The two-stage VF system was designed for and operated with an organic load of 40 g COD m−2 d−1 (i.e. 2 m2 per person equivalent). Data from the following years of operation showed that from the third year nitrogen elimination increased and stabilized. The median values of the nitrogen elimination rate in the first five years of operation have been 3.51, 2.76, 4.20, 3.84 and 4.07 g N m−2 d−1, the median value of the last three years being 3.8 g N m−2 d−1 and 1,380 g N m−2 yr−1, respectively, and the nitrogen removal >60%. It can be assumed that the vegetation as well as the biofilm development in the two-stage VF CW system plays the major role for the enhancement of the nitrogen elimination rate.


Sign in / Sign up

Export Citation Format

Share Document