Microbial monitoring of ammonia removal in a UASB reactor treating pre-digested chicken manure with anaerobic granular inoculum

2017 ◽  
Vol 241 ◽  
pp. 332-339 ◽  
Author(s):  
Cigdem Yangin-Gomec ◽  
Goksen Pekyavas ◽  
Tugba Sapmaz ◽  
Sevcan Aydin ◽  
Bahar Ince ◽  
...  
2010 ◽  
Vol 61 (3) ◽  
pp. 737-743 ◽  
Author(s):  
J. C. Araujo ◽  
M. M. S. Correa ◽  
E. C. Silva ◽  
A. P. Campos ◽  
V. M. Godinho ◽  
...  

This work applied PCR amplification method and Fluorescence in situ hybridisation (FISH) with primers and probes specific for the anammox organisms and aerobic ammonia-oxidising β-Proteobacteria in order to detect these groups in different samples from a wastewater treatment system comprised by UASB reactor and three polishing (maturation) ponds in series. Seven primer pairs were used in order to detect Anammox bacteria. Positive results were obtained with three of them, suggesting that Anammox could be present in polishing pond sediments. However, Anammox bacteria were not detected by FISH, indicating that they were not present in sediment samples, or they could be present but below FISH detection limit. Aerobic ammonia- and nitrite-oxidising bacteria were verified in water column samples through Most Probable Number (MPN) analysis, but they were not detected in sediment samples by FISH. Ammonia removal efficiencies occurred systematically along the ponds (24, 32, and 34% for polishing pond 1, 2, and 3, respectively) but the major reaction responsible for this removal is still unclear. Some nitrification might have occurred in water samples because some nitrifying bacteria were present. Also Anammox reaction might have occurred because Anammox genes were detected in the sediments, but probably this reaction was too low to be noticed. It is important also to consider that some of the ammonia removal observed might be related to NH3 stripping, associated with the pH increase resulting from the intensive photosynthetic activity in the ponds (mechanism under investigation). Therefore, it can be concluded that more than one mechanism (or reaction) might be involved in the ammonia removal in the polishing ponds investigated in this study.


2002 ◽  
Vol 45 (12) ◽  
pp. 79-87 ◽  
Author(s):  
S. Kalyuzhnyi ◽  
V. Sklyar ◽  
A. Epov ◽  
I. Arkhipchenko ◽  
I. Barboulina ◽  
...  

Combined biological and physico-chemical treatment of filtered pig manure wastewater has been investigated on the pilot installation operated under ambient temperatures (15-20°C) and included: i) UASB-reactor for elimination of major part of COD from the filtrate; (ii) stripper of CO2 + fluidised bed crystallisator for phosphate (and partially ammonia) removal from the anaerobic effluents in the form of insoluble minerals - struvite (MgNH4PO4) and hydroxyapatite (Ca5(PO4)3OH); (iii) aerobic-anoxic biofilter for polishing the final effluent (elimination of remaining BOD and nutrients). Under overall hydraulic retention time (HRT) for the system of 7.8 days, the total COD, inorganic nitrogen and total phosphorous removals were 88, 65 and 74%, respectively. A decrease of the overall HRT to 4.25 days led to 91, 37 and 82% removals for total COD, inorganic nitrogen and total phosphorus removals, respectively. The approaches for further improvement of effluent quality are discussed.


2002 ◽  
Vol 45 (10) ◽  
pp. 371-376 ◽  
Author(s):  
A. Tawfik ◽  
B. Klapwijk ◽  
F. El-Gohary ◽  
G. Lettinga

A small-scale pilot plant consisting of a three-stage RBC has been investigated for the removal of E. coli, COD fractions and ammonia from the effluent of an UASB reactor treating domestic wastewater. The results obtained reveal that a three-stage system operated at a HRT of 3.0 h represents an effective post-treatment process. The remaining COD in the final effluent was only 51 (± 7) mgl−1. Ammonia concentration was reduced by 67 (± 7.6) %. The overall E. coli reduction was 1.39 log10 at an influent count of 6.5 log10 corresponding to an overall removal efficiency of 95.8 (± 4.7) %. However, according to prevailing standards, residual E. coli counts are still high for unrestricted reuse for irrigation purposes. When the system was operated at a HRT of 10 h, overall E. coli removal and ammonia reduction were 99.9 (± 0.05)% and 92 (± 6.5)% respectively. At a HRT of 10 h, recirculation of the 3rd stage effluent to the 1st stage reduced the residual of E. coli in the final effluent from 2 × 103 to 9.8 × 102/100ml. Moreover, the recirculation of nitrified effluent from the 3rd stage to the 1st stage increased ammonia removal in the stage 1 from 23 to 43%. This relatively high ammonia removal likely can be attributed to the supply of nitrifiers from 3rd stage to the 1st one.


2007 ◽  
Vol 55 (11) ◽  
pp. 65-71 ◽  
Author(s):  
R.K.X. Bastos ◽  
E.N. Rios ◽  
F.L. Dornelas ◽  
F.A.L. Assunção ◽  
L.E. Nascimento

Ammonia and phosphorus removal were evaluated over four years monitoring of an experimental wastewater treatment plant in Brazil: initially a UASB reactor (real scale) + three shallow polishing ponds (pilot scale), afterwards a UASB + submerged aerated biofilter (BF) (real scale) + the same pond series. Shallow ponds (h < 0.90m) provided considerable ammonia removal, but phosphorus removal was somewhat poorer. An equation was derived for the estimation of ammonia pond effluent, based on the same assumptions of the well known Pano and Middlebrooks model. According to the experimental data, an effluent suitable for aquaculture should be achieved with retention time of 25 days.


2018 ◽  
Vol 77 (11) ◽  
pp. 2635-2641 ◽  
Author(s):  
R. K. X. Bastos ◽  
E. N. Rios ◽  
I. A. Sánchez

Abstract A set of experiments were conducted in Brazil in a pilot-scale waste stabilization pond (WSP) system (a four-maturation-pond series) treating an upflow anaerobic sludge blanket (UASB) reactor effluent. Over a year and a half the pond series was monitored under two flow rate conditions, hence also different hydraulic retention times and surface loading rates. On-site and laboratory trials were carried out to assess: (i) ammonia losses by volatilization using acrylic capture chambers placed at the surface of the ponds; (ii) organic nitrogen sedimentation rates using metal buckets placed at the bottom of the ponds for collecting settled particulate matter; (iii) nitrogen removal by algal uptake based on the nitrogen content of the suspended particulate matter in samples from the ponds' water column. In addition, nitrification and denitrification rates were measured in laboratory-based experiments using pond water and sediment samples. The pond system achieved high nitrogen removal (69% total nitrogen and 92% ammonia removal). The average total nitrogen removal rates varied from 10,098 to 3,849 g N/ha·d in the first and the last ponds, respectively, with the following fractions associated with the various removal pathways: (i) 23.5–45.6% sedimentation of organic nitrogen; (ii) 13.1–27.8% algal uptake; (iii) 1.2–3.1% ammonia volatilization; and (iv) 0.15–0.34% nitrification-denitrification.


2010 ◽  
Vol 101 (16) ◽  
pp. 6368-6373 ◽  
Author(s):  
Fatma Abouelenien ◽  
Wataru Fujiwara ◽  
Yuzaburo Namba ◽  
Maria Kosseva ◽  
Naomichi Nishio ◽  
...  

2020 ◽  
Vol 10 (21) ◽  
pp. 7825
Author(s):  
Yevhenii Shapovalov ◽  
Sergey Zhadan ◽  
Günther Bochmann ◽  
Anatoly Salyuk ◽  
Volodymyr Nykyforov

Providing anaerobic digestion is a prospective technology for utilizing organic waste, however, for waste with a high content of nitrogen such as manure, dilution is necessary to decrease the ammonia inhibition effect which leads to the production of a huge effluent amount which is difficult to use. Dry anaerobic digestion has some advantages such as reduced reactor volume, higher volumetric methane yield, lower energy consumption for heating, less wastewater production, and lower logistic costs for fertilizers. These factors generate interest in using it for treatment of even high-nitrogen substrates. The purpose of this work was to analyze different dry anaerobic digestion technologies, the features of dry anaerobic digestion, laboratory studies on chicken manure dry anaerobic digestion, and methods of reducing inhibitors’ effects. Nowadays, there are no dry anaerobic industrial plants working on chicken manure. However, studies on dry anaerobic digestion of chicken manure have proven the possibility of methane production under fermentation of chicken manure with high total solids content, but the process has been described as being unstable. Co-fermentation, ammonium/ammonia removal, and adaptation of the microbial consortium have been used to decrease the effect of ammonia inhibition. A prospective way for ammonia concentration control is absorption using a non-volatile sorbent located in the reactor. It decreases ammonia content during wet anaerobic digestion by 33% and it is characterized by having a positive economic effect. Therefore, dry anaerobic fermentation of chicken manure is possible, but there is still no efficient way to provide it. The results of this article should be helpful in the selection of anaerobic digestion technology for treating chicken manure.


2020 ◽  
Vol 146 ◽  
pp. 1021-1030 ◽  
Author(s):  
Patrice Ramm ◽  
Christian Abendroth ◽  
Adriel Latorre-Pérez ◽  
Christiane Herrmann ◽  
Stefan Sebök ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document