Biosurfactant production by Aureobasidium pullulans in stirred tank bioreactor: New approach to understand the influence of important variables in the process

2017 ◽  
Vol 243 ◽  
pp. 264-272 ◽  
Author(s):  
Larissa Pereira Brumano ◽  
Felipe Antonio Fernandes Antunes ◽  
Sara Galeno Souto ◽  
Júlio Cesar dos Santos ◽  
Joachim Venus ◽  
...  
2018 ◽  
Vol 69 ◽  
pp. 1-11 ◽  
Author(s):  
Willian Daniel Hahn Schneider ◽  
Roselei Claudete Fontana ◽  
Simone Mendonça ◽  
Félix Gonçalves de Siqueira ◽  
Aldo José Pinheiro Dillon ◽  
...  

2019 ◽  
Vol 117 ◽  
pp. 113-125 ◽  
Author(s):  
Zorana Rončević ◽  
Jovana Grahovac ◽  
Siniša Dodić ◽  
Damjan Vučurović ◽  
Jelena Dodić

2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Mohd Azmir Arifin ◽  
Maizirwan Mel ◽  
Mohamed Ismail Abdul Karim ◽  
Aini Ideris

The aim of this study is to prepare a model for the production of Newcastle disease virus (NDV) lentogenic F strain using cell culture in bioreactor for live attenuated vaccine preparation. In this study, firstly we investigated the growth of Vero cells in several culture media. The maximum cell number was yielded by culture of Vero cells in Dulbecco's Modified Eagle Medium (DMEM) which was1.93×106 cells/ml. Secondly Vero cells were grown in two-litre stirred tank bioreactor by using several commercial microcarriers. We achieved the maximum cell concentration about7.95×105 cells/ml when using Cytodex 1. Later we produced Newcastle Disease virus in stirred tank bioreactor based on the design developed using Taguchi L4 method. Results reveal that higher multiplicity of infection (MOI) and size of cell inoculums can yield higher virus titer. Finally, virus samples were purified using high-speed centrifugation based on3∗∗(3-1) Fractional Factorial Design. Statistical analysis showed that the maximum virus titer can be achieved at virus sample concentration of 58.45% (v/v), centrifugation speed of 13729 rpm, and centrifugation time of 4 hours. As a conclusion, high yield of virus titer could be achieved through optimization of cell culture in bioreactor and separation by high-speed centrifugation.


2008 ◽  
Vol 21 (3) ◽  
pp. 786-792 ◽  
Author(s):  
Gabriela Trejo-Tapia ◽  
Carlos M. Cerda-García-Rojas ◽  
Mario Rodríguez-Monroy ◽  
Ana C. Ramos-Valdivia

2018 ◽  
Vol 26 ◽  
pp. 80-87 ◽  
Author(s):  
Dão P. de Carvalho Neto ◽  
Gilberto V. de Melo Pereira ◽  
Ana M.O. Finco ◽  
Luiz A.J. Letti ◽  
Bruno J.G. da Silva ◽  
...  

2020 ◽  
Vol 69 (2) ◽  
pp. 193-203
Author(s):  
QANDEEL LARAIB ◽  
MARYAM SHAFIQUE ◽  
NUSRAT JABEEN ◽  
SEHAR AFSHAN NAZ ◽  
HAFIZ RUB NAWAZ ◽  
...  

Microbial populations within the rhizosphere have been considered as prosperous repositories with respect to bioremediation aptitude. Among various environmental contaminants, effluent from textile industries holds a huge amount of noxious colored materials having high chemical oxygen demand concentrations causing ecological disturbances. The study was aimed to explore the promising mycobiome of rhizospheric soil for the degradation of azo dyes to develop an efficient system for the exclusion of toxic recalcitrants. An effluent sample from the textile industry and soil samples from the rhizospheric region of Musa acuminata and Azadirachta indica were screened for indigenous fungi to decolorize Congo red, a carcinogenic diazo dye, particularly known for its health hazards to the community. To develop a bio-treatment process, Aspergillus terreus QMS-1 was immobilized on pieces of Luffa cylindrica and exploited in stirred tank bioreactor under aerobic and optimized environment. Quantitative estimation of Congo red decolorization was carried out using UV-Visible spectrophotometer. The effects of fungal immobilization and biosorption on the native structure of Luffa cylindrica were evaluated using a scanning electron microscope. A. terreus QMS-1 can remove (92%) of the dye at 100 ppm within 24 h in the presence of 1% glucose and 1% ammonium sulphate at pH 5.0. The operation of the bioreactor in a continuous flow for 12 h with 100 ppm of Congo red dye in simulated textile effluent resulted in 97% decolorization. The stirred tank bioreactor was found to be a dynamic, well maintained, no sludge producing approach for the treatment of textile effluents by A. terreus QMS-1 of the significant potential for decolorization of Congo red.


Sign in / Sign up

Export Citation Format

Share Document