The volatilization of heavy metals during co-combustion of food waste and polyvinyl chloride in air and carbon dioxide/oxygen atmosphere

2017 ◽  
Vol 244 ◽  
pp. 1024-1030 ◽  
Author(s):  
Chuncheng Ke ◽  
Xiaoqian Ma ◽  
Yuting Tang ◽  
Weihua Zheng ◽  
Zhendong Wu
Author(s):  
Madhuri Santosh Bhandwalkar

To link food demand and reduction in food waste, proactive approaches should be taken. Perishable food is mainly fruits and vegetables, waste from different processing industries like pulses, meat products, oil products, dairy products, and fishery byproducts. Conventional food waste management solution is land filling which is not sustainable as it generates global warming gases like methane and carbon dioxide. To reduce food waste, the process known as “food valorization” has become another solution to landfilling, the concept which is given by European Commission in 2012, meaning food processing waste conversion to value-added products. In this chapter the study focuses on production of industrially important enzymes from food waste which could be one of the reactive solutions. Different enzymes like pectinase, peroxidase, lipase, glucoamylase, and protease can be produced from food waste.


2020 ◽  
Vol 36 ◽  
pp. 76-81 ◽  
Author(s):  
Younghyun Lee ◽  
Soosan Kim ◽  
Eilhann E. Kwon ◽  
Jechan Lee

2020 ◽  
Vol 66 (No. 3) ◽  
pp. 89-96
Author(s):  
Chibuzo Nwankwo ◽  
Chigozie Francis Okoyeuzu ◽  
Ikpeama Ahamefula

The efficiency of three modified plastic digesters (3.6 m<sup>3</sup> each) using food waste for biogas generation in cooking food was evaluated. The experiment was laid out based on a completely randomised design. A plastic tank was modified as a biodegradation system for food waste digestion to generate a biogas. The biochemical and chemical oxygen demand ranged from 44.58 to 49.62% and 130.42 to 139.20%, respectively, before digestion, but decreased significantly (P &lt; 0.05) after digestion. The pH of the fermenting slurry fluctuated (6.24–6.86) and an average biogas of 0.574 m<sup>3</sup> (505–601 L·day<sup>–1</sup>) per day was generated from the three experimental waste proportions which would be sufficient to cook three meals per day for 3 to 4 people. The methane gas significantly increased (P &lt; 0.05) while the carbon-dioxide significantly decreased (P &lt; 0.05) at the peak of the biogas production. The generated biogas significantly cooked (P &lt; 0.05) faster than kerosene, but not faster than liquefied petroleum gas. The flammable biogas generation and high significant (P &lt;0.05) percentage change in the physico-chemical properties of the wastes after digestion implied high efficiency performance of the digesters modified from the plastic tanks.


2014 ◽  
Vol 32 (7) ◽  
pp. 1310-1317 ◽  
Author(s):  
Avdulla J Alija ◽  
Ismet D Bajraktari ◽  
Hidajete Muharremi ◽  
Nikolaus Bresgen ◽  
Peter M Eckl

It has been reported by the Ministry of Environment in Kosova that particle emissions from one of the units of the coal-fired power plants (Kosova A) in Kastriot/Obiliq were exceeding the European standard by some 74 times. Besides the particle emission, there is also release of sulphur dioxide, mono-nitrogen oxide (NOx), carbon monoxide, carbon dioxide, organic compounds and heavy metals. In addition, there is also release of heavy metals and organic compounds from a nearby solid waste dumpsite. Together, they are considered to be responsible for the increased health problems of the population living in the vicinity.To study the genetic effects of these emissions we focused on the genetic load, that is, recessive mutations that affect the fitness of their carriers, of exposed wild living Drosophila melanogaster. The effects of ash from the dumpsite on the other hand were investigated upon feeding the ash with the nutrient medium. Our results revealed that the D. melanogaster population from the Kastriot/Obiliq area carries a high genetic load of 54.7%. Drosophila fed with the nutrient medium containing ash in a concentration of 1% carried a genetic load of 37.1%, whilst increasing concentrations (2% and 3% of ash) led to higher genetic loads of 68.7% and 67.4%, respectively.


2021 ◽  
Vol 261 ◽  
pp. 04034
Author(s):  
Cui Shuang ◽  
Han Qing ◽  
Bai Song

The enhanced technology of phytoremediation has the advantages of low treatment cost, good purification effect, low environmental risk and environmental aesthetics. However, some hyperaccumulators grow slowly and their biomass is generally low; the activity of heavy metals in the soil is very low; the roots of plants are distributed in the surface of the soil, and the remediation effect of deep soil is poor; the nutrients of the soil to be repaired are seriously insufficient. It is necessary to take a series of strengthening measures to improve the efficiency of phytoremediation. The strengthening technologies of phytoremediation include chemical strengthening, microbial strengthening, animal strengthening, carbon dioxide strengthening, agronomic and management measures strengthening, etc.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Xiaohang Zhang ◽  
Jianan Guo ◽  
Shijun Wu ◽  
Fanrong Chen ◽  
Yongqiang Yang

Abstract Due to the high capacity of impurities in its structure, calcite is regarded as one of the most attractive minerals to trap heavy metals (HMs) and radionuclides via substitution during coprecipitation/crystal growth. As a high-reactivity mineral, calcite may release HMs via dissolution. However, the influence of the incorporated HMs and radionuclides in calcite on its dissolution is unclear. Herein, we reported the dissolution behavior of the synthesized calcite incorporated with cadmium (Cd), cobalt (Co), nickel (Ni), zinc (Zn), and uranium (U). Our findings indicated that the HMs and U in calcite could significantly change the dissolution process of calcite. The results demonstrated that the incorporated HMs and U had both inhibiting and enhancing effects on the solubility of calcite, depending on the type of metals and their content. Furthermore, secondary minerals such as smithsonite (ZnCO3), Co-poor aragonite, and U-rich calcite precipitated during dissolution. Thus, the incorporation of metals into calcite can control the behavior of HMs/uranium, calcite, and even carbon dioxide.


Sign in / Sign up

Export Citation Format

Share Document