Effects of pollutants from power plants in Kosova on genetic loads of Drosophila melanogaster

2014 ◽  
Vol 32 (7) ◽  
pp. 1310-1317 ◽  
Author(s):  
Avdulla J Alija ◽  
Ismet D Bajraktari ◽  
Hidajete Muharremi ◽  
Nikolaus Bresgen ◽  
Peter M Eckl

It has been reported by the Ministry of Environment in Kosova that particle emissions from one of the units of the coal-fired power plants (Kosova A) in Kastriot/Obiliq were exceeding the European standard by some 74 times. Besides the particle emission, there is also release of sulphur dioxide, mono-nitrogen oxide (NOx), carbon monoxide, carbon dioxide, organic compounds and heavy metals. In addition, there is also release of heavy metals and organic compounds from a nearby solid waste dumpsite. Together, they are considered to be responsible for the increased health problems of the population living in the vicinity.To study the genetic effects of these emissions we focused on the genetic load, that is, recessive mutations that affect the fitness of their carriers, of exposed wild living Drosophila melanogaster. The effects of ash from the dumpsite on the other hand were investigated upon feeding the ash with the nutrient medium. Our results revealed that the D. melanogaster population from the Kastriot/Obiliq area carries a high genetic load of 54.7%. Drosophila fed with the nutrient medium containing ash in a concentration of 1% carried a genetic load of 37.1%, whilst increasing concentrations (2% and 3% of ash) led to higher genetic loads of 68.7% and 67.4%, respectively.

1960 ◽  
Vol 11 (3) ◽  
pp. 317 ◽  
Author(s):  
NJ Barrow

The decomposition of a mixture of organic compounds was studied by measuring the evolution of carbon dioxide, and changes in the concentration of ammonium, sulphate, and phosphate. In one experiment the nitrogen supply was varied by varying the proportion of glycine in the mixture of organic compounds; in another the sulphur supply was varied by varying the proportion of cysteine; and in a third the phosphorus supply was varied by varying the proportion of sodium ß-glycerophosphate. Mineralization of an element depended on the concentration of that element in the organic mixture. Mineralization of nitrogen did not occur until respiration had lowered the carbon/nitrogen ratio to about 5 and mineralization of sulphur did not occur until respiration had lowered the carbon/sulphur ratio to about 50. On the other hand mineralization of phosphorus occurred before the carbon/phosphorus ratio had been reduced to any consistent figure. This may not be a characteristic of phosphorus mineralization but may have been caused by suboptimal supply of nitrogen. Mineralization of an element also depended on the concentration of other elements and, in general, reduced supplies of one element caused increased mineralization of others.


Author(s):  
Ladislav Vesely ◽  
Vaclav Dostal

With the increasing interest in solar and geothermal power plants as well as waste heat recovery systems from many technologies, the whole world is more focused on gas power cycles. Especially, the supercritical carbon dioxide (S-CO2) cycles are very interesting for these applications. This is due to many advantages of the S-CO2 cycles over the other cycles such as a steam-water cycle or helium cycle. On the other hand, S-CO2 cycles have also disadvantages. One of the disadvantages is presence of impurities in the cycles. The big question is the effect of these impurities in the CO2, which can occur as impurities or can be suitably added to the pure CO2. From the previous research, it is obvious that binary mixtures affect the cycle as they influence cycle component design and thus the overall efficiency of the power cycle. The biggest effect of mixtures is on the heat exchangers and compressor, which operate close to the critical point. The positive effect of the binary mixtures is observed in the recuperative heat exchanger. On the other hand, negative effects occurs in the cooler. Therefore, the Czech Technical University in Prague (CTU) conducted research on supercritical carbon dioxide cycles, which is focused on the effect of the gaseous admixtures in S-CO2 on the different cycle components. The main goal of this paper is to describe the effect of gaseous admixtures on the efficiency of the cycles and their effect on each component. The first part of the study is focused on the calculation of the basic cycles for binary mixtures and description of the effect on the compressor and the cycle efficiency. The second part of the study is focused on the calculation of the basic cycles for multicomponent mixtures. In this part, the effect of the mixtures for different compositions and amounts of the individual mixture components will be presented. The calculations are performed for pure CO2 and then for selected multicomponent mixtures. A basic multicomponent mixture includes mixtures from technology of carbon capture and storage. Other multicomponent mixtures are combinations of previously investigated gaseous admixtures such as He, CO, O2, N2, H2, CH4 and H2S. The last part of the study is focused on the optimization of individual basic cycles for different amount of admixtures in CO2. The result of this study defines the optimum composition of multicomponent mixtures and describes their effect on the cycle efficiency for the particular utilization of S-CO2 cycle.


Radiocarbon ◽  
2007 ◽  
Vol 49 (2) ◽  
pp. 325-330 ◽  
Author(s):  
K M Hämäläinen ◽  
H Jungner ◽  
O Antson ◽  
J Räsänen ◽  
K Tormonen ◽  
...  

A preliminary investigation of the biocarbon fraction in carbon dioxide emissions of power plants using both fossil- and biobased fuels is presented. Calculation of the biocarbon fraction is based on radiocarbon content measured in power plant flue gases. Samples were collected directly from the chimneys into plastic sampling bags. The 14C content in CO2 was measured by accelerator mass spectrometry (AMS). Flue gases from power plants that use natural gas, coal, wood chips, bark, plywood residue, sludge from the pulp factory, peat, and recovered fuel were measured. Among the selected plants, there was one that used only fossil fuel and one that used only biofuel; the other investigated plants burned mixtures of fuels. The results show that 14C measurement provides the possibility to determine the ratio of bio and fossil fuel burned in power plants.


1919 ◽  
Vol 1 (6) ◽  
pp. 645-656 ◽  
Author(s):  
Calvin B. Bridges

In May, 1916, a culture of Drosophila melanogaster showed that a new sex-linked lethal had arisen. The linkage relations indicated that the position of the lethal was in the neighborhood of the sex-linked recessive "vermilion," whose locus in the X chromosome is at 33.0. When females heterozygous for the lethal were outcrossed to vermilion males, all the daughters that received the lethal-bearing chromosome showed vermilion eye-color, though, from the pedigree, vermilion was known to be absent from the ancestry of the mother. The lethal action and the unexpected appearance of vermilion both suggested that this was another instance of the phenomenon called "deficiency;" that is, the loss or "inactivation" of the genes of a section of the X chromosome. The lethal action would then be due to the deficient region including one or more genes necessary for the life of the individual. The appearance of vermilion in females carrying only one vermilion gene would be explainable on the ground that the deficient-bearing females are virtually haploid for the region including the vermilion locus. Linkage tests showed that the amount of crossing over in the neighborhood of the deficiency was cut down by about five units. Part of this may be attributed to the actual length of the "deficient" region, within which it is probable that no crossing over occurs, and part (probably most) to an alteration in the synaptic relations in the regions immediately adjacent. In more remote regions there was no disturbance or perhaps a slight rise in the frequency of crossing over. Both the local fall and the possible rise in more distant regions would seem to argue that a "pucker" at synapsis had been caused by an actual shortening of the deficient chromosome. That the deficient region extends to the left of the locus of vermilion was indicated by a test in which it was observed that the presence of an extra piece of chromosome including the loci for vermilion and sable ("vermilion-sable duplication") did not neutralize the lethal action of the deficiency. Haploid tests with the other recessive mutations in the neighborhood of vermilion showed that the deficiency was not extensive enough to include their loci. Cytological preparations were made but were unsatisfactory. The stock was finally lost, apparently as the result of injurious action upon viability, fertility, and productivity by the deficiency.


2019 ◽  
Vol 2 (3) ◽  
pp. 141-151
Author(s):  
O. E. Gnezdova ◽  
E. S. Chugunkova

Introduction: greenhouses need microclimate control systems to grow agricultural crops. The method of carbon dioxide injection, which is currently used by agricultural companies, causes particular problems. Co-generation power plants may boost the greenhouse efficiency, as they are capable of producing electric energy, heat and cold, as well as carbon dioxide designated for greenhouse plants.Methods: the co-authors provide their estimates of the future gas/electricity rates growth in the short term; they have made a breakdown of the costs of greenhouse products, and they have also compiled the diagrams describing electricity consumption in case of traditional and non-traditional patterns of power supply; they also provide a power distribution pattern typical for greenhouse businesses, as well as the structure and the principle of operation of a co-generation unit used by a greenhouse facility.Results and discussion: the co-authors highlight the strengths of co-generation units used by greenhouse facilities. They have also identified the biological features of carbon dioxide generation and consumption, and they have listed the consequences of using carbon dioxide to enrich vegetable crops.Conclusion: the co-authors have formulated the expediency of using co-generation power plants as part of power generation facilities that serve greenhouses.


2017 ◽  
Vol 1 ◽  
pp. 264
Author(s):  
Md Didarul Islam ◽  
Ashiqur Rahaman ◽  
Fahmida Jannat

This study was based on to determine the concentration of macro and micro nutrients as well as toxic and nontoxic heavy metals present in the chicken feed available in Dhaka city of Bangladesh. All macro nutrients, if present in the feed at high concentration have some adverse effect, at the same time if this nutrient present in the feed at low concentration this have some adverse effect too. So that this nutrient level should be maintained at a marginal level. On the other side toxic heavy metals if present in the feed at very low concentration those can contaminate the total environment of the ecosystem. In this study six brand samples (starter, grower, finisher and layer) which was collected from different renowned chicken feed formulation industry in Bangladesh. Those samples were prepared for analysis by wet ashing and then metals were determined by Atomic Absorption Spectroscopy. It was found that 27.7 to 68.4, 57.3 to 121.9, 0.21 to 4.1, 0.32 to 2.1, 0.11 to 1.58, 0.28 to 2.11 and 0.28 to 1.78 for zinc, iron, copper, mercury, cadmium, nickel and cobalt respectively. It was found that essential macro and micro nutrients were present in the feed in low concentration on the other side mercury was present in high concentration in the feed samples.


1973 ◽  
Vol 8 (1) ◽  
pp. 110-121
Author(s):  
A. Netzer ◽  
J.D. Norman

Abstract The merits of activated carbon for removal of organic compounds from wastewater have been well documented in the literature. On the other hand there is a lack of published data on the use of activated carbon for the removal of trace metals from wastewater. Experiments were designed to assess the possibility that activated carbon treatment would remove aluminum, cadmium, chromium, cobalt, copper, iron, lead, manganese, mercury, nickel, silver and zinc from wastewater. All metals studied were tested over the pH range 3-11. Greater than 99.5% removal was achieved by pH adjustment and activated carbon treatment for most of the metals tested.


Sign in / Sign up

Export Citation Format

Share Document