Biological removal of H2S gas in a semi-pilot scale biotrickling filter: Optimization of various parameters for efficient removal at high loading rates and low pH conditions

2019 ◽  
Vol 285 ◽  
pp. 121328 ◽  
Author(s):  
C. Nagendranatha Reddy ◽  
Sungwoo Bae ◽  
Booki Min
1999 ◽  
Vol 40 (9) ◽  
pp. 55-62 ◽  
Author(s):  
Bjørnar Eikebrokk

Optimisation of coagulation-direct filtration processes with respect to efficient removal of humic substances, i.e. natural organic matter (NOM) has gained a lot of focus in many countries over the last years. This paper presents experimental results from pilot scale research studies aimed at optimising the coagulation-direct filtration process applied to soft and humic raw waters with low turbidity and alkalinity levels. Comprehensive tests of 3 types of raw waters with different NOM content, 5 types of coagulants, and 3 calcium sources for the purpose of corrosion control have been conducted. Removal efficiencies with respect to relevant water quality parameters are presented, with typical relationships between raw water NOM content, coagulant dose requirements and pH. Generally, when applying metal-based coagulants, residual metal concentration was the critical parameter regarding minimum coagulant dose requirements. Typical NOM removal efficiencies were in the range of 75-90% and 40-70% with respect to colour and organic carbon, respectively. Optimum pH conditions for the removal of NOM and/or residual metals do not always coincide with that of turbidity. The experiments also showed that poly-aluminium and ferric chlorides might have some benefits over alum in terms of dose requirements and range of optimum pH values, and that chitosan may be used for colour removal with good results.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2213 ◽  
Author(s):  
Abiodun O. Jegede ◽  
Grietje Zeeman ◽  
Harry Bruning

Chinese dome digesters are usually operated at long hydraulic retention times (HRT) and low influent total solids (TS) concentration because of limited mixing. In this study, a newly optimised Chinese dome digester with a self-agitating mechanism was investigated at a pilot scale (digester volume = 500 L) and compared with a conventional Chinese dome digester (as blank) at 15% influent TS concentration at two retention times (30 and 40 days). The reactors were operated at ambient temperature: 27–33 °C. The average specific methane production, volatile fatty acids and percentage of volatile solids (VS) reduction are 0.16 ± 0.13 and 0.25 ± 0.05L CH4/g VS; 1 ± 0.5 and 0.7 ± 0.3 g/L; and 51 ± 14 and 57 ± 10% at 40 days HRT (day 52–136) for the blank and optimised digester, respectively. At 30 days HRT (day 137–309) the results are 0.19 ± 0.12 and 0.23 ± 0.04 L CH4/g VS; 1.2 ± 0.6 and 0.7 ± 0.3 g/L; and 51 ± 9 and 58 ± 11.6%. Overall, the optimised digester produced 40% more methane than the blank, despite the high loading rates applied. The optimised digester showed superior digestion treatment efficiency and was more stable in terms of VFA concentration than the blank digester, can be therefore operated at high influent TS (15%) concentration.


2008 ◽  
Vol 57 (2) ◽  
pp. 201-207 ◽  
Author(s):  
G. Soreanu ◽  
M. Béland ◽  
P. Falletta ◽  
K. Edmonson ◽  
P. Seto

The purpose of this laboratory pilot scale study at the Wastewater Technology Centre (WTC), Environment Canada, Burlington, ON was to investigate the anaerobic biological removal of H2S from biogas under real-time operating conditions. Biogas produced in a 538 litre pilot anaerobic digester was continuously fed into a 12 litre biotrickling filter containing plastic fibres as packing bed media. The process was monitored for several months. The biogas flowrate and H2S concentration ranged between 10 to 70 L/h and 1,000 to 4,000 ppmv respectively over the course of the test period. Nitrate-rich wastewater from a pilot scale sequencing batch reactor effluent was used as the nutritive solution for the biotrickling filter. The paper presents the influence of several operational parameters such as biogas flowrate, hydrogen sulphide concentration and composition of nutrient solution on process performance. To date, our results show H2S removal rates up to 100% without adverse effects on the methane concentration of the biogas. No system deterioration was observed over long term operation. This non-conventional technology is very promising and could be considered for full scale applications.


1995 ◽  
Vol 32 (3) ◽  
pp. 263-270 ◽  
Author(s):  
Seni Karnchanawong ◽  
Jaras Sanjitt

Two pilot-scale studies were comparatively conducted under tropical conditions during December 1992 to September 1993. One study involved facultative ponds(FP) and the others water spinach ponds(SP). Four rectangular concrete ponds, 0.8 m × 2.4 m × 1.1 m (width × length × depth), were employed to treat the Chiang Mai University campus wastewater. Water spinach (Ipomoea aquatica) was planted in two of the ponds. The influent characteristics noted showed a low organic content, i.e. BOD 25.4-29.9 mg/l, with BOD:N ratio around 1:1. The investigations were conducted using the following hydraulic retention times (HRT): 1.6, 2, 2.7, 4, 8 and 16 d. The results showed that the BOD, COD and SS mass removal rates increased as the mass loading rates increased and the SP was significantly more effective in reducing the organic content than the FP. No relationship was found between TN mass removal and the loading rates. However, the TP mass removal rates in the SP and the FP were rather low and were considered to be insignificant. It was observed that SS accumulated in the water spinach root systems which tended to act as a strainer. This process led to plant growth inhibition and finally die-off. The average water spinach growth rates varied from 37 to 107 g wet wt./(m2.d) and no relationship was established between the growth rates and the HRT.


2010 ◽  
Vol 101 (8) ◽  
pp. 2700-2705 ◽  
Author(s):  
Jianwei Chen ◽  
Ping Zheng ◽  
Yi Yu ◽  
Chongjian Tang ◽  
Qaisar Mahmood
Keyword(s):  

2017 ◽  
Vol 65 (1) ◽  
pp. 50 ◽  
Author(s):  
Muhammad Yousuf Ali ◽  
Ana Pavasovic ◽  
Peter B. Mather ◽  
Peter J. Prentis

Carbonic anhydrase (CA), Na+/K+-ATPase (NKA) and Vacuolar-type H+-ATPase (HAT) play vital roles in osmoregulation and pH balance in decapod crustaceans. As variable pH levels have a significant impact on the physiology of crustaceans, it is crucial to understand the mechanisms by which an animal maintains its internal pH. We examined expression patterns of cytoplasmic (CAc) and membrane-associated form (CAg) of CA, NKA α subunit and HAT subunit a in gills of freshwater crayfish, Cherax quadricarinatus, at three pH levels – 6.2, 7.2 (control) and 8.2 – over 24 h. Expression levels of CAc were significantly increased at low pH and decreased at high pH conditions 24 h after transfer. Expression increased at low pH after 12 h, and reached its maximum level by 24 h. CAg showed a significant increase in expression at 6 h after transfer at low pH. Expression of NKA significantly increased at 6 h after transfer to pH 6.2 and remained elevated for up to 24 h. Expression for HAT and NKA showed similar patterns, where expression significantly increased 6 h after transfer to low pH and remained significantly elevated throughout the experiment. Overall, CAc, CAg, NKA and HAT gene expression is induced at low pH conditions in freshwater crayfish.


2011 ◽  
Vol 58-59 ◽  
pp. 154-161 ◽  
Author(s):  
F.J. Álvarez-Hornos ◽  
C. Lafita ◽  
V. Martínez-Soria ◽  
J.M. Penya-Roja ◽  
M.C. Pérez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document