Catalytic conversion of enzymatic hydrolysis lignin into cycloalkanes over a gamma-alumina supported nickel molybdenum alloy catalyst

2021 ◽  
Vol 323 ◽  
pp. 124634
Author(s):  
Qingfeng Liu ◽  
Yunfei Bai ◽  
Hong Chen ◽  
Mengmeng Chen ◽  
Yushuai Sang ◽  
...  
2018 ◽  
Vol 7 (1) ◽  
pp. 1120-1128 ◽  
Author(s):  
Binpeng Zhang ◽  
Dongjie Yang ◽  
Huan Wang ◽  
Yong Qian ◽  
JinHao Huang ◽  
...  

2017 ◽  
Vol 99 ◽  
pp. 674-681 ◽  
Author(s):  
Liangliang An ◽  
Guanhua Wang ◽  
Hongyu Jia ◽  
Cuiyun Liu ◽  
Wenjie Sui ◽  
...  

Catalysts ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 187
Author(s):  
Yuguo Dong ◽  
Xinyu Lu ◽  
Chengjuan Hu ◽  
Liang Li ◽  
Qixiang Hu ◽  
...  

This paper investigated the pyrolytic behaviors of enzymatic hydrolysis lignin (EHL) and EHL treated with steam explosion (EHL-SE) by pyrolysis-gas chromatography/mass spectrometer (Py-GC/MS). It was shown that the main component of the pyrolysis products was phenolic compounds, including G-type, H-type, S-type, and C-type phenols. With different treatment methods, the proportion of units in phenolic products had changed significantly. Meanwhile, proximate, elemental, and FTIR analysis of both lignin substrates were also carried out for a further understanding of the lignin structure and composition with or without steam explosion treatment. FTIR result showed that, after steam explosion treatment, the fundamental structural framework of the lignin substrate was almost unchangeable, but the content of lignin constituent units, e.g., hydroxyl group and alkyl group, evidently changed. It was noticeable that 2-methoxy-4-vinylphenol with 11% relative content was the most predominant pyrolytic product for lignin after steam explosion treatment. Combined with the above analysis, the structural change and pyrolysis product distribution of EHL with or without steam explosion treatment could be better understood, providing more support for the multi-functional utilization of lignin.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Xianqin Lu ◽  
Can Li ◽  
Shengkui Zhang ◽  
Xiaohan Wang ◽  
Wenqing Zhang ◽  
...  

Abstract Background The bioconversion of lignocellulose to fermentable C5/C6-saccharides is composed of pretreatment and enzymatic hydrolysis. Lignin, as one of the main components, resists lignocellulose to be bio-digested. Alkali and organosolv treatments were reported to be able to delignify feedstocks and loose lignocellulose structure. In addition, the use of additives was an alternative way to block lignin and reduce the binding of cellulases to lignin during hydrolysis. However, the relatively high cost of these additives limits their commercial application. Results This study explored the feasibility of using elephant grass (Pennisetum purpureum) and reed straw (Phragmites australis), both of which are important fibrous plants with high biomass, no-occupation of cultivated land, and soil phytoremediation, as feedstocks for bio-saccharification. Compared with typical agricultural residues, elephant grass and reed straw contained high contents of cellulose and hemicellulose. However, lignin droplets on the surface of elephant grass and the high lignin content in reed straw limited their hydrolysis performances. High hydrolysis yield was obtained for reed straw after organosolv and alkali pretreatments via increasing cellulose content and removing lignin. However, the hydrolysis of elephant grass was only enhanced by organosolv pretreatment. Further study showed that the addition of bovine serum albumin (BSA) or thioredoxin with His- and S-Tags (Trx-His-S) improved the hydrolysis of alkali-pretreated elephant grass. In particular, Trx-His-S was first used as an additive in lignocellulose saccharification. Its structural and catalytic properties were supposed to be beneficial for enzymatic hydrolysis. Conclusions Elephant grass and reed straw could be used as feedstocks for bioconversion. Organosolv and alkali pretreatments improved their enzymatic sugar production; however, the increase in hydrolysis yield of pretreated elephant grass was not as effective as that of reed straw. During the hydrolysis of alkali-pretreated elephant grass, Trx-His-S performed well as additive, and its structural and catalytic capability was beneficial for enzymatic hydrolysis.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Daniel Forchheim ◽  
Ursel Hornung ◽  
Philipp Kempe ◽  
Andrea Kruse ◽  
David Steinbach

Lignin forms an important part of lignocellulosic biomass and is an abundantly available residue. It is a potential renewable source of phenol. Liquefaction of enzymatic hydrolysis lignin as well as catalytical hydrodeoxygenation of the main intermediates in the degradation of lignin, that is, catechol and guaiacol, was studied. The cleavage of the ether bonds, which are abundant in the molecular structure of lignin, can be realised in near-critical water (573 to 673 K, 20 to 30 MPa). Hydrothermal treatment in this context provides high selectivity in respect to hydroxybenzenes, especially catechol. RANEY Nickel was found to be an adequate catalyst for hydrodeoxygenation. Although it does not influence the cleavage of ether bonds, RANEY Nickel favours the production of phenol from both lignin and catechol. The main product from hydrodeoxygenation of guaiacol with RANEY Nickel was cyclohexanol. Reaction mechanism and kinetics of the degradation of guaiacol were explored.


RSC Advances ◽  
2017 ◽  
Vol 7 (14) ◽  
pp. 8314-8322 ◽  
Author(s):  
Xing Wang ◽  
Yanzhu Guo ◽  
Jinghui Zhou ◽  
Guangwei Sun

To delineate structural changes of lignin after SCEP, enzymatic hydrolysis lignin (EHL) in poplar chips, lignin in pretreated residues (SCEP-RL), lignin in liquors (SCEP-DL) were isolated and analyzed by GPC, 13C-, 31P-, 2D-HSQC-NMR and TGA.


Sign in / Sign up

Export Citation Format

Share Document