scholarly journals Bio-Derived Carbon with Tailored Hierarchical Pore Structures and Ultra-High Specific Surface Area for Superior and Advanced Supercapacitors

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 27
Author(s):  
Fuming Zhang ◽  
Xiangshang Xiao ◽  
Dayakar Gandla ◽  
Zhaoxi Liu ◽  
Daniel Q. Tan ◽  
...  

We report here on a hollow-fiber hierarchical porous carbon exhibiting an ultra-high specific surface area, synthesized by a facile method of carbonization and activation, using the Metaplexis Japonica (MJ) shell. The Metaplexis Japonica-based activated carbon demonstrated a very high specific surface area of 3635 m2 g−1. Correspondingly, the derived carbonaceous material delivers an ultra-high capacitance and superb cycle life in an alkaline electrolyte. The pore-ion size compatibility is optimized using tailored hierarchical porous carbon and different ion sized organic electrolytes. In ionic liquids nonaqueous based electrolytes we tailored the MJ carbon pore structure to the electrolyte ion size. The corresponding supercapacitor shows a superior rate performance and low impedance, and the device records specific energy and specific power densities as high as 76 Wh kg−1 and 6521 W kg−1, as well as a pronounced cycling durability in the ionic liquid electrolytes. Overall, we suggest a protocol for promising carbonaceous electrode materials enabling superior supercapacitors performance.

RSC Advances ◽  
2019 ◽  
Vol 9 (58) ◽  
pp. 33872-33882
Author(s):  
Genxing Zhu ◽  
Qi Liu ◽  
Fengyi Cao ◽  
Qi Qin ◽  
Mingli Jiao

Silkworm cocoon derived N, O-HPC (SBET = 2270.19 m2 g−1) was synthesized, and demonstrated exceptionally high uptake of MB (2104.29 mg g−1).


2021 ◽  
Author(s):  
Jiaxin Li ◽  
Rudolf Holze ◽  
Simbarashe Moyo ◽  
Song Wang ◽  
Sanxi Li ◽  
...  

Abstract In this work, a series of three-dimensional (3D) porous carbon nanomaterial with large specific surface area and hierarchical pores were selectively prepared from biomass with varied properties obtained by tuning the carbonization temperature and activation agent. The optimized carbon sample (PC-500-6) exhibits a typical hierarchical porous structure with a high specific surface area (3203 m2/g) and pore size distribution in the range 0.8 to 3.0 nm, which shows excellent adsorption performance for methylene blue (MB) from an aqueous solution. The maximum adsorption capacity even reaches 917.43 mg/g, which is among one of the best results up to now. Through analysis of the adsorption data, it is found that the corresponding adsorption kinetic fits the pseudo-second-order model very well. The present results demonstrate that biomass-derived hierarchical porous carbon has a real potential application for wastewater treatment.Background:Dealing with the ever-increasing water pollution has become an urgent global problem, especially the organic containing polluted water. The physical adsorption has become one of the most popular ways for removal of organic dyes from wastewater due to its low cost as well as high efficiency. However, the adsorption performance is still limited by the low specific surface area (SSA) and unsuitable pore size. Hence, it is still a challenge to synthesize active carbon (AC) with high SSA, suitable pore size distribution as well as low cost for polluted water treatment. Here, we report an efficient method to prepare AC with large SSA from jujube for removal of MB in aqueous solution. The present results demonstrate that biomass-derived hierarchical porous carbon has a real potential application for wastewater treatment.Results:The as-prepared hierarchical porous structure carbon material (PC-500-6) shows a high specific surface area (3203 m2/g) and pore size distribution in the range 0.8 to 3.0 nm, while exhibits an enhanced adsorption performance for methylene blue (MB) from an aqueous solution. The maximum adsorption capacity even reaches 917.43 mg/g, which was calculated from Langmuir model. Through analysis of the adsorption data, it is found that the corresponding adsorption kinetic fits the pseudo-second-order model very well.Conclusions:It can be concluded that the adsorption of MB has a strong correlation with SSA, pore size distribution as well as the pore volume. The present study paved a practical way for wastewater treatment by using biomass-derived hierarchical porous carbon.


2017 ◽  
Vol 10 (02) ◽  
pp. 1650074 ◽  
Author(s):  
Cheng Chen ◽  
Chenhao Zhao ◽  
Zhibiao Hu ◽  
Kaiyu Liu

The hierarchical porous carbon with overall macropores and surface micropores has been prepared from carbonization of chitosan/[Formula: see text][Formula: see text] gel-like composite. The specific surface area and pore volume of this carbon can come to 2358.9[Formula: see text][Formula: see text] g[Formula: see text] and 1.14[Formula: see text]cm3 g[Formula: see text], respectively, and the active component Se with amorphous structure is uniformly encapsulated into the microporous structure to form Se/carbon composite. As Li–Se battery cathode, the composite delivers a second discharge capacity of 537.6[Formula: see text]mAh g[Formula: see text] at 0.2[Formula: see text]C, and a discharge capacity of 517.9[Formula: see text]mA h g[Formula: see text] can be retained after 100 cycles. Even at a high rate of 5[Formula: see text]C, the composite still reveals a stable discharge capacity of 325.2[Formula: see text]mAh g[Formula: see text]. The excellent electrochemical performances of Se/carbon composite may attribute to high specific surface area and hierarchical porous feature.


RSC Advances ◽  
2016 ◽  
Vol 6 (9) ◽  
pp. 6967-6977 ◽  
Author(s):  
Weibing Xu ◽  
Bin Mu ◽  
Aiqin Wang

Well-defined porous carbon nanoflakes with a high specific surface area have been successfully prepared via pyrolytic carbonization and alkali activation treatment of an easily available kapok fiber.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 6014
Author(s):  
Yixin Zhang ◽  
Guofeng Qiu ◽  
Rumeng Wang ◽  
Yang Guo ◽  
Fanhui Guo ◽  
...  

Using bamboo powder biochar as raw material, high-quality meso/microporous controlled hierarchical porous carbon was prepared—through the catalysis of Fe3+ ions loading, in addition to a chemical activation method—and then used to adsorb copper ions in an aqueous solution. The preparation process mainly included two steps: load-alkali leaching and chemical activation. The porosity characteristics (specific surface area and mesopore ratio) were controlled by changing the K2CO3 impregnation ratio, activation temperature, and Fe3+ ions loading during the activation process. Additionally, three FBPC samples with different pore structures and characteristics were studied for copper adsorption. The results indicate that the adsorption performance of the bamboo powder biochar FBPC material was greatly affected by the meso/micropore ratio. FBPC 2.5-900-2%, impregnated at a K2CO3: biochar ratio of 2.5 and a Fe3+: biochar mass ratio of 2%, and activated at 900 °C for 2 h in N2 atmosphere, has a very high specific surface area of 1996 m2 g−1 with a 58.1% mesoporous ratio. Moreover, it exhibits an excellent adsorption capacity of 256 mg g−1 and rapid adsorption kinetics for copper ions. The experimental results show that it is feasible to control the hierarchical pore structure of bamboo biochar-derived carbons as a high-performance adsorbent to remove copper ions from water.


2021 ◽  
Author(s):  
Li-Feng Cai ◽  
Jie-Min Zhan ◽  
Jie Liang ◽  
Lei Yang ◽  
Jie Yin

Abstract Novel hierarchical porous carbon materials (HPCs) were fabricated via a reactive template-induced in situ hypercrosslinking procedure. The effects of carbonization conditions on the microstructure and morphology of HPC were investigated, and the adsorption of methylene blue (MB) on HPC was explored. The as-prepared HPC has a hierarchical micro-, meso- and macropore structure, which results from the overlap of hollow nanospheres possessing microporous shells and macroporous cavities. The carbonization temperature, carbonization time and carbonization heating rate played important roles in tailoring the nanostructures of HPC. The BET specific surface area and micropore specific surface area can reach 2388 m2·g−1 and 1892 m2·g−1, respectively. Benefitting from the well-developed pore structure, the MB removal efficiency can reach 99% under optimized conditions. The adsorption kinetics and thermodynamics can be well described by a pseudo-second-order model and Langmuir model, respectively. Furthermore, such adsorption is characterized by a spontaneous endothermic process.


Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 345 ◽  
Author(s):  
Lianzan Yang ◽  
Yongyan Li ◽  
Zhifeng Wang ◽  
Weimin Zhao ◽  
Chunling Qin

High-entropy alloys (HEAs) present excellent mechanical properties. However, the exploitation of chemical properties of HEAs is far less than that of mechanical properties, which is mainly limited by the low specific surface area of HEAs synthesized by traditional methods. Thus, it is vital to develop new routes to fabricate HEAs with novel three-dimensional structures and a high specific surface area. Herein, we develop a facile approach to fabricate nanoporous noble metal quasi-HEA microspheres by melt-spinning and dealloying. The as-obtained nanoporous Cu30Au23Pt22Pd25 quasi-HEA microspheres present a hierarchical porous structure with a high specific surface area of 69.5 m2/g and a multiphase approximatively componential solid solution characteristic with a broad single-group face-centered cubic XRD pattern, which is different from the traditional single-phase or two-phase solid solution HEAs. To differentiate, these are named quasi-HEAs. The synthetic strategy proposed in this paper opens the door for the synthesis of porous quasi-HEAs related materials, and is expected to promote further applications of quasi-HEAs in various chemical fields.


2021 ◽  
Vol 45 (12) ◽  
pp. 5712-5719
Author(s):  
Yongxiang Zhang ◽  
Peifeng Yu ◽  
Mingtao Zheng ◽  
Yong Xiao ◽  
Hang Hu ◽  
...  

Porous carbons with a high specific surface area (2314–3470 m2 g−1) are prepared via a novel KCl-assisted activation strategy for high-performance supercapacitor.


Sign in / Sign up

Export Citation Format

Share Document