scholarly journals Ligninolytic fungus Polyporus sp. S133 mediated metabolic degradation of fluorene

2016 ◽  
Vol 47 (3) ◽  
pp. 610-616 ◽  
Author(s):  
Zainab Mat Lazim ◽  
Tony Hadibarata
2021 ◽  
Vol 22 (15) ◽  
pp. 7996
Author(s):  
Jordan D. Lewicky ◽  
Nya L. Fraleigh ◽  
Alexandrine L. Martel ◽  
Thi M.-D. Nguyen ◽  
Peter W. Schiller ◽  
...  

Peptide therapeutics offer numerous advantages in the treatment of diseases and disorders of the central nervous system (CNS). However, they are not without limitations, especially in terms of their pharmacokinetics where their metabolic lability and low blood–brain barrier penetration hinder their application. Targeted nanoparticle delivery systems are being tapped for their ability to improve the delivery of therapeutics into the brain non-invasively. We have developed a family of mannosylated glycoliposome delivery systems for targeted drug delivery applications. Herein, we demonstrate via in vivo distribution studies the potential of these glycoliposomes to improve the utility of CNS active therapeutics using dynantin, a potent and selective dynorphin peptide analogue antagonist of the kappa opioid receptor (KOR). Glycoliposomal entrapment protected dynantin against known rapid metabolic degradation and ultimately improved brain levels of the peptide by approximately 3–3.5-fold. Moreover, we linked this improved brain delivery with improved KOR antagonist activity by way of an approximately 30–40% positive modulation of striatal dopamine levels 20 min after intranasal administration. Overall, the results clearly highlight the potential of our glycoliposomes as a targeted delivery system for therapeutic agents of the CNS.


2004 ◽  
Vol 382 (3) ◽  
pp. 945-956 ◽  
Author(s):  
Rachel TRÉHIN ◽  
Hanne M. NIELSEN ◽  
Heinz-Georg JAHNKE ◽  
Ulrike KRAUSS ◽  
Annette G. BECK-SICKINGER ◽  
...  

We assessed the metabolic degradation kinetics and cleavage patterns of some selected CPP (cell-penetrating peptides) after incubation with confluent epithelial models. Synthesis of N-terminal CF [5(6)-carboxyfluorescein]-labelled CPP, namely hCT (human calcitonin)-derived sequences, Tat(47–57) and penetratin(43–58), was through Fmoc (fluoren-9-ylmethoxycarbonyl) chemistry. Metabolic degradation kinetics of the tested CPP in contact with three cell-cultured epithelial models, MDCK (Madin–Darby canine kidney), Calu-3 and TR146, was evaluated by reversed-phase HPLC. Identification of the resulting metabolites of CF-hCT(9–32) was through reversed-phase HPLC fractionation and peak allocation by MALDI–TOF-MS (matrix-assisted laser-desorption ionization–time-of-flight mass spectrometry) or direct MALDI–TOF-MS of incubates. Levels of proteolytic activity varied highly between the investigated epithelial models and the CPP. The Calu-3 model exhibited the highest proteolytic activity. The patterns of metabolic cleavage of hCT(9–32) were similar in all three models. Initial cleavage of this peptide occurred at the N-terminal domain, possibly by endopeptidase activity yielding both the N- and the C-terminal counterparts. Further metabolic degradation was by aminopeptidase, endopeptidase and/or carboxypeptidase activities. In conclusion, when in contact with epithelial models, the studied CPP were subject to efficient metabolism, a prerequisite of cargo release on the one hand, but with potential for premature cleavage and loss of the cargo as well on the other. The results, particularly on hCT(9–32), may be used as a template to suggest structural modifications towards improved CPP performance.


2020 ◽  
Vol 135 ◽  
pp. 110868 ◽  
Author(s):  
Ina Geburek ◽  
Angelika Preiss-Weigert ◽  
Monika Lahrssen-Wiederholt ◽  
Dieter Schrenk ◽  
Anja These

1998 ◽  
Vol 73 (2-3) ◽  
pp. 113-126 ◽  
Author(s):  
Masahiko Miura ◽  
Yoshihisa Kitaoka ◽  
Masaaki Kakezawa ◽  
Tomoaki Nishida

1992 ◽  
Vol 288 (1) ◽  
pp. 55-61 ◽  
Author(s):  
K N Pandey

The kinetics of internalization, sequestration and metabolic degradation of atrial natriuretic factor (ANF)-receptor complex were studied in rat thoracic aortic smooth-muscle (RTASM) cells. These parameters were directly determined by measuring 125I-ANF binding to total, intracellular and cell-surface receptors. Pretreatment of cells with the lysosomotropic agent chloroquine and the energy depleter dinitrophenol led to an increase in the intracellular 125I-ANF radioactivity. After 60 min incubation at 37 degrees C, cell-associated 125I-ANF radioactivity fell rapidly in chloroquine-treated cells (> 85%) compared with the controls (< 45%). 125I-ANF radioactivity increased to a peak of 65% of the initial level within 15 min in chloroquine-treated cells compared with only 22% in the control cells. During the initial incubation period at 37 degrees C, chloroquine inhibited the release of both intact and degraded 125I-ANF in a time-dependent manner. However, at later incubation times, the effect of chloroquine was diminished and release of both degraded and intact ligand was resumed. Extracellular unlabelled ANF did not affect the release of degraded 125I-ANF but it accelerated the release of intact ANF by a retroendocytotic mechanism. After the endocytosis, about 30-40% of ANF receptors were restored to the cell surface from the internalized pool of receptors. The restoration was blocked by chloroquine or dinitrophenol but not by cycloheximide. Exposure of RTASM cells to unlabelled ANF resulted in a time- and concentration-dependent loss of ANF receptors. Unlabelled ANF (10 nM) induced a loss of more than 52% of 125I-ANF binding, and a complete loss occurred at micromolar concentrations. It is inferred that ANF-induced down-regulation of its receptor resulted primarily from an increased rate in internalization and metabolic degradation of ligand-receptor complex by receptor-mediated endocytotic mechanisms.


1970 ◽  
Vol 18 (6) ◽  
pp. 1139-1144 ◽  
Author(s):  
Julius J. Menn ◽  
J. Bruce. McBain ◽  
Lawrence J. Hoffman

Sign in / Sign up

Export Citation Format

Share Document