Bone structural and mechanical indices in Adolescent Idiopathic Scoliosis evaluated by high-resolution peripheral quantitative computed tomography (HR-pQCT)

Bone ◽  
2014 ◽  
Vol 61 ◽  
pp. 109-115 ◽  
Author(s):  
Wing Sze Yu ◽  
Ka Yan Chan ◽  
Fiona Wai Ping Yu ◽  
Bobby Kin Wah Ng ◽  
Kwong Man Lee ◽  
...  
2013 ◽  
Vol 22 (01) ◽  
pp. 13-17
Author(s):  
J. M. Patsch ◽  
R. Kocijan ◽  
H. Resch ◽  
J. Haschka

ZusammenfassungKnochenstabilität ist durch Knochenvolumen und Mikroarchitektur des Knochens determiniert. Mittels HR-pQCT (high resolution peripheral quantitative computed tomography) steht eine nicht invasive Methode zur Verfügung, um die Mikroarchitektur des Knochens darzustellen. Die Resultate aus zahlreichen Studien geben Rückschlüsse auf unterschiedliche Strukturalterationen im Rahmen von Erkrankungen, die mit einem erhöhten Frakturrisiko einhergehen. Die Knochendichtemessung mittels DXA spiegelt das Frakturrisiko oft nicht adäquat wider. Umso entscheidender ist es, Risikofaktoren in der Wahl der Therapie zu berücksichtigen. Die klinische Relevanz der Resultate aus HR-pQCT-Messungen besteht derzeit dahingehend, dass wertvolle Informationen über Veränderungen der Mikroarchitektur auf Forschungsebene erhoben werden.


2020 ◽  
pp. jrheum.191391 ◽  
Author(s):  
Stephanie Finzel ◽  
Sarah L. Manske ◽  
Cheryl Barnabe ◽  
Andrew J. Burghardt ◽  
Hubert Marotte ◽  
...  

Objective The aim of this multi-reader exercise was to assess the reliability and change over time of erosion measurements in rheumatoid arthritis (RA) patients using high-resolution peripheral quantitative computed tomography (HR-pQCT). Methods HR-pQCT scans of 23 patients with RA were assessed at baseline and 12 months. Four experienced readers examined the dorsal, palmar, radial, and ulnar surfaces of the metacarpal head (MH) and phalangeal base (PB) of the 2nd and 3rd digits, blinded to time order. In total, 368 surfaces (23 patients x16 surfaces) were evaluated per time point to characterize cortical breaks as pathological (erosion) or physiological, and to quantify erosion width and depth. Reliability was evaluated by intraclass correlation coefficients (ICC), percentage agreement, and Light’s kappa; change over time was defined by means ± SD of erosion numbers and dimensions. Results ICCs for the mean measurements of width and depth of the pathological breaks ranged between 0.819 - 0.883, and 0.771 - 0.907 respectively. Most physiological cortical breaks were found at the palmar PB, whereas most pathological cortical breaks were located at the radial MH. There was a significant increase in both the numbers and the dimensions of erosions between baseline and follow-up (p=0.0001 for erosion numbers, width, and depth in axial plane, and p=0.001 for depth in perpendicular plane). Conclusion This exercise confirmed good reliability of HR-pQCT erosion measurements and their ability to detect change over time.


2016 ◽  
Vol 43 (10) ◽  
pp. 1914-1920 ◽  
Author(s):  
Andrea Scharmga ◽  
Michiel Peters ◽  
Astrid van Tubergen ◽  
Joop van den Bergh ◽  
Cheryl Barnabe ◽  
...  

Objective.Conventional radiographs (CR) of the hands are the gold standard for imaging bone erosions. The presence of bone erosions, reflected by the presence of cortical breaks, is a poor prognostic factor in patients with rheumatoid arthritis (RA). The availability of high-resolution peripheral quantitative computed tomography (HR-pQCT) enables detailed investigation of cortical breaks in rheumatic diseases. The aim of this image review is to show HR-pQCT images of the spectrum of cortical breaks with and without underlying trabecular bone changes in metacarpophalangeal (MCP) joints of healthy controls (HC) and patients with RA, with corresponding images on CR and magnetic resonance imaging (MRI).Methods.Second and third MCP joints of 41 patients (of which 10 were early RA with ≤ 2 years and 24 longstanding RA with ≥ 10 years of disease duration) and 38 HC were imaged by CR, MRI, and HR-pQCT (XtremeCT1, Scanco Medical AG). Representative images of the spectrum of cortical breaks were selected.Results.Cortical breaks were found in early and longstanding RA, but also in HC. They were heterogeneous in size, location, and number per joint, with a variety of surrounding cortical and underlying trabecular bone characteristics.Conclusion.Using HR-pQCT images of MCP joints, heterogeneous cortical breaks with and without surrounding trabecular bone changes were found, not only in RA but also in HC. The underlying mechanisms and significance of this spectrum of cortical breaks as found with high 3-D resolution needs further investigation.


Sign in / Sign up

Export Citation Format

Share Document