scholarly journals A biomimetic self-assembling peptide promotes bone regeneration in vivo: A rat cranial defect study

Bone ◽  
2019 ◽  
Vol 127 ◽  
pp. 602-611 ◽  
Author(s):  
Sushmita Saha ◽  
Xuebin B. Yang ◽  
Nagitha Wijayathunga ◽  
Sarah Harris ◽  
Georg A. Feichtinger ◽  
...  
2008 ◽  
Vol 87 (7) ◽  
pp. 606-616 ◽  
Author(s):  
C. E. Semino

In recent years, the development of new biomaterials with specifications for tissue and organ functional requirements—such as proper biological, structural, and biomechanical properties as well as designed control for biodegradation and therapeutic drug-release capacity—is the main aim of many academic and industrial programs. Hence, the concept of molecular self-assembly is the driving force for the development of new biomaterials that support the growth and functional differentiation of cells and tissues in a controlled manner. The discovery, properties, and development of self-assembling peptides to be used as three-dimensional (3D) scaffolds based on their similarity (in structure and mechanical features) to extracellular matrices are described. Self-assembling peptides can be used for in vitro applications for cell 3D culture as well as in vivo for tissue regeneration such as bone and optical nerve repair, as well as for drug delivery of mediators to improve therapy, as in the case of myocardial infarction. Finally, the use of self-assembling materials in combination with a bioengineering platform is proposed to assist functional bone regeneration in cases of larger bone defects, including exposed fractures due to trauma and spinal disorders dealing with high loadings, as well as replacement of big bone structures due to tumors.


Polymers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 914 ◽  
Author(s):  
Song Kwon ◽  
Seunghun Lee ◽  
A. Sivashanmugam ◽  
Janet Kwon ◽  
Seung Kim ◽  
...  

Cryogels have recently gained interest in the field of tissue engineering as they inherently possess an interconnected macroporous structure. Considered to be suitable for scaffold cryogel fabrication, methacrylated gelatin (GelMA) is a modified form of gelatin valued for its ability to retain cell adhesion site. Bioglass nanoparticles have also attracted attention in the field due to their osteoinductive and osteoconductive behavior. Here, we prepare methacrylated gelatin cryogel with varying concentration of bioglass nanoparticles to study its potential for bone regeneration. We demonstrate that an increase in bioglass concentration in cryogel leads to improved mechanical property and augmented osteogenic differentiation of mesenchymal cells during in vitro testing. Furthermore, in vivo testing in mice cranial defect model shows that highest concentration of bioglass nanoparticles (2.5 w/w %) incorporated in GelMA cryogel induces the most bone formation compared to the other tested groups, as studied by micro-CT and histology. The in vitro and in vivo results highlight the potential of bioglass nanoparticles incorporated in GelMA cryogel for bone regeneration.


2020 ◽  
Vol 48 (3) ◽  
pp. 755-764
Author(s):  
Benjamin B. Rothrauff ◽  
Rocky S. Tuan

Bone possesses an intrinsic regenerative capacity, which can be compromised by aging, disease, trauma, and iatrogenesis (e.g. tumor resection, pharmacological). At present, autografts and allografts are the principal biological treatments available to replace large bone segments, but both entail several limitations that reduce wider use and consistent success. The use of decellularized extracellular matrices (ECM), often derived from xenogeneic sources, has been shown to favorably influence the immune response to injury and promote site-appropriate tissue regeneration. Decellularized bone ECM (dbECM), utilized in several forms — whole organ, particles, hydrogels — has shown promise in both in vitro and in vivo animal studies to promote osteogenic differentiation of stem/progenitor cells and enhance bone regeneration. However, dbECM has yet to be investigated in clinical studies, which are needed to determine the relative efficacy of this emerging biomaterial as compared with established treatments. This mini-review highlights the recent exploration of dbECM as a biomaterial for skeletal tissue engineering and considers modifications on its future use to more consistently promote bone regeneration.


2019 ◽  
Author(s):  
Hyun Joo Kim ◽  
Su Jung You ◽  
Dae Hyeok Yang ◽  
Heung Jae Chun ◽  
Hae Kwan Park ◽  
...  

Author(s):  
João Augusto Oshiro‐Junior ◽  
Rafaela Moreno Barros ◽  
Camila Garcia da Silva ◽  
Caroline Cordeiro de Souza ◽  
Cássio Rocha Scardueli ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Lu Wang ◽  
Shuwei Liu ◽  
Chunxia Ren ◽  
Siyuan Xiang ◽  
Daowei Li ◽  
...  

AbstractNanomaterial-based drug sustainable release systems have been tentatively applied to bone regeneration. They, however, still face disadvantages of high toxicity, low biocompatibility, and low drug-load capacity. In view of the low toxicity and high biocompatibility of polymer nanomaterials and the excellent load capacity of hollow nanomaterials with high specific surface area, we evaluated the hollow polydopamine nanoparticles (HPDA NPs), in order to find an optimal system to effectively deliver the osteogenic drugs to improve treatment of bone defect. Data demonstrated that the HPDA NPs synthesized herein could efficiently load four types of osteogenic drugs and the drugs can effectively release from the HPDA NPs for a relatively longer time in vitro and in vivo with low toxicity and high biocompatibility. Results of qRT-PCR, ALP, and alizarin red S staining showed that drugs released from the HPDA NPs could promote osteogenic differentiation and proliferation of rat bone marrow mesenchymal stem cells (rBMSCs) in vitro. Image data from micro-CT and H&E staining showed that all four osteogenic drugs released from the HPDA NPs effectively promoted bone regeneration in the defect of tooth extraction fossa in vivo, especially tacrolimus. These results suggest that the HPDA NPs, the biodegradable hollow polymer nanoparticles with high drug load rate and sustainable release ability, have good prospect to treat the bone defect in future clinical practice.


Sign in / Sign up

Export Citation Format

Share Document