scholarly journals Accurate Color Tuning of Firefly Chromophore by Modulation of Local Polarization Electrostatic Fields

2010 ◽  
Vol 98 (3) ◽  
pp. 581a-582a
Author(s):  
Duanjun Cai
2011 ◽  
Vol 115 (2) ◽  
pp. 329-332 ◽  
Author(s):  
Duanjun Cai ◽  
Miguel A. L. Marques ◽  
Fernando Nogueira

1989 ◽  
Vol 50 (C8) ◽  
pp. C8-135-C8-140
Author(s):  
C. MAINKA ◽  
W. DRACHSEL ◽  
J. H. BLOCK ◽  
G. KOZLOWSKI

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 923
Author(s):  
Kun Huang ◽  
Ji Yao

The potential application field of single-walled carbon nanotubes (SWCNTs) is immense, due to their remarkable mechanical and electrical properties. However, their mechanical properties under combined physical fields have not attracted researchers’ attention. For the first time, the present paper proposes beam theory to model SWCNTs’ mechanical properties under combined temperature and electrostatic fields. Unlike the classical Bernoulli–Euler beam model, this new model has independent extensional stiffness and bending stiffness. Static bending, buckling, and nonlinear vibrations are investigated through the classical beam model and the new model. The results show that the classical beam model significantly underestimates the influence of temperature and electrostatic fields on the mechanical properties of SWCNTs because the model overestimates the bending stiffness. The results also suggest that it may be necessary to re-examine the accuracy of the classical beam model of SWCNTs.


2021 ◽  
Author(s):  
Alexander B. Weberg ◽  
Samuel P. McCollom ◽  
Laura M. Thierer ◽  
Michael R. Gau ◽  
Patrick J. Carroll ◽  
...  

Secondary coordination sphere electrostatic effects tune the valence manifolds of copper centers, impacting molecular geometries, photophysical properties, and redox potentials.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Se-Hwan Kim ◽  
Kimleng Chuon ◽  
Shin-Gyu Cho ◽  
Ahreum Choi ◽  
Seanghun Meas ◽  
...  

AbstractMicrobial rhodopsins are distributed through many microorganisms. Heliorhodopsins are newly discovered but have an unclear function. They have seven transmembrane helices similar to type-I and type-II rhodopsins, but they are different in that the N-terminal region of heliorhodopsin is cytoplasmic. We chose 13 representative heliorhodopsins from various microorganisms, expressed and purified with an N-terminal His tag, and measured the absorption spectra. The 13 natural variants had an absorption maximum (λmax) in the range 530–556 nm similar to proteorhodopsin (λmax = 490–525 nm). We selected several candidate residues that influence rhodopsin color-tuning based on sequence alignment and constructed mutants via site-directed mutagenesis to confirm the spectral changes. We found two important residues located near retinal chromophore that influence λmax. We also predict the 3D structure via homology-modeling of Thermoplasmatales heliorhodopsin. The results indicate that the color-tuning mechanism of type-I rhodopsin can be applied to understand the color-tuning of heliorhodopsin.


2021 ◽  
pp. 2104923
Author(s):  
Qian Li ◽  
Bin Xu ◽  
Zhongwei Chen ◽  
Jiang Han ◽  
Li Tan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document