scholarly journals Lateral Communication between Stress Fiber Sarcomeres Facilitates a Local Remodeling Response

2012 ◽  
Vol 103 (10) ◽  
pp. 2082-2092 ◽  
Author(s):  
Laura M. Chapin ◽  
Elizabeth Blankman ◽  
Mark A. Smith ◽  
Yan-Ting Shiu ◽  
Mary C. Beckerle
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Cécile Gaston ◽  
Simon De Beco ◽  
Bryant Doss ◽  
Meng Pan ◽  
Estelle Gauquelin ◽  
...  

AbstractAt the basis of cell shape and behavior, the organization of actomyosin and its ability to generate forces are widely studied. However, the precise regulation of this contractile network in space and time is unclear. Here, we study the role of the epithelial-specific protein EpCAM, a contractility modulator, in cell shape and motility. We show that EpCAM is required for stress fiber generation and front-rear polarity acquisition at the single cell level. In fact, EpCAM participates in the remodeling of a transient zone of active RhoA at the cortex of spreading epithelial cells. EpCAM and RhoA route together through the Rab35/EHD1 fast recycling pathway. This endosomal pathway spatially organizes GTP-RhoA to fine tune the activity of actomyosin resulting in polarized cell shape and development of intracellular stiffness and traction forces. Impairment of GTP-RhoA endosomal trafficking either by silencing EpCAM or by expressing Rab35/EHD1 mutants prevents proper myosin-II activity, stress fiber formation and ultimately cell polarization. Collectively, this work shows that the coupling between co-trafficking of EpCAM and RhoA, and actomyosin rearrangement is pivotal for cell spreading, and advances our understanding of how biochemical and mechanical properties promote cell plasticity.


1984 ◽  
Vol 99 (1) ◽  
pp. 95s-103s ◽  
Author(s):  
P Mangeat ◽  
K Burridge

In this review we discuss some of the proteins for which a role in linking actin to the fibroblast plasma membrane has been suggested. We focus on the family of proteins related to erythrocyte spectrin, proteins that have generally been viewed as having an organization and a function in actin-membrane attachment similar to those of erythrocyte spectrin. Experiments in which we precipitated the nonerythrocyte spectrin within living fibroblasts have led us to question this supposed similarity of organization and function of the nonerythrocyte and erythrocyte spectrins. Intracellular precipitation of fibroblast spectrin does not affect the integrity of the major actin-containing structures, the stress fiber microfilament bundles. Unexpectedly, however, we found that the precipitation of spectrin results in a condensation and altered distribution of the vimentin class of intermediate filaments in most cells examined. Although fibroblast spectrin may have a role in the attachment of some of the cortical, submembranous actin, it is surprising how little the intracellular immunoprecipitation of the spectrin affects the cells. Several proteins have been found concentrated at the ends of stress fibers, where the actin filaments terminate at focal contacts. Two of these proteins, alpha-actinin and fimbrin, have properties that suggest that they are not involved in the attachment of the ends of the bundles to the membrane but are more probably involved in the organization and cross-linking of the filaments within the bundles. On the other hand, vinculin and talin are two proteins that interact with each other and may form part of a chain of attachments between the ends of the microfilament bundles and the focal contact membrane. Their role in this attachment, however, has not been established and further work is needed to examine their interaction with actin and to identify any other components with which they may interact, particularly in the plasma membrane.


2017 ◽  
Vol 43 (5) ◽  
pp. 1777-1789 ◽  
Author(s):  
Lei Zhang ◽  
Tianrong Ji ◽  
Qin Wang ◽  
Kexin Meng ◽  
Rui Zhang ◽  
...  

Background/Aims: Recent studies provided compelling evidence that stimulation of the calcium sensing receptor (CaSR) exerts direct renoprotective action at the glomerular podocyte level. This protective action may be attributed to the RhoA-dependent stabilization of the actin cytoskeleton. However, the underlying mechanisms remain unclear. Methods: In the present study, an immortalized human podocyte cell line was used. Fluo-3 fluorescence was utilized to determine intracellular Ca2+ concentration ([Ca2+]i), and western blotting was used to measure canonical transient receptor potential 6 (TRPC6) protein expression and RhoA activity. Stress fibers were detected by FITC-phalloidin. Results: Activating CaSR with a high extracellular Ca2+ concentration ([Ca2+]o) or R-568 (a type II CaSR agonist) induces an increase in the [Ca2+]i in a dose-dependent manner. This increase in [Ca2+]i is phospholipase C (PLC)-dependent and is smaller in the absence of extracellular Ca2+ than in the presence of 0.5 mM [Ca2+]o. The CaSR activation-induced [Ca2+]i increase is attenuated by the pharmacological blockage of TRPC6 channels or siRNA targeting TRPC6. These data suggest that TRPC6 is involved in CaSR activation-induced Ca2+ influx. Consistent with a previous study, CaSR stimulation results in an increase in RhoA activity. However, the knockdown of TRPC6 significantly abolished the RhoA activity increase induced by CaSR stimulation, suggesting that TRPC6-dependent Ca2+ entry is required for RhoA activation. The activated RhoA is involved in the formation of stress fibers and focal adhesions in response to CaSR stimulation because siRNA targeting RhoA attenuated the increase in the stress fiber mediated by CaSR stimulation. Moreover, this effect of CaSR activation on the formation of stress fibers is also abolished by the knockdown of TRPC6. Conclusion: TRPC6 is involved in the regulation of stress fiber formation and focal adhesions via the RhoA pathway in response to CaSR activation. This may explain the direct protective action of CaSR agonists.


2007 ◽  
Vol 361-363 ◽  
pp. 1055-1058 ◽  
Author(s):  
Miho Nakamura ◽  
Akiko Nagai ◽  
Natalie Ohashi ◽  
Yumi Tanaka ◽  
Yasutaka Sekijima ◽  
...  

The osteoblast adhesion to the substrates are recognized to play a fundamental role in osteoconduction process. The purpose of this study was to evaluate the in vitro behavior of osteoblasts cultured on polarized hydroxyapatite (HA), having the enhanced osteobonding abilities. Osteoblast-like cells were seeded onto the polarized HA and investigated the adhesion and motility. The polarization had no effects on the percentage of the number of the spreaded cells against all the adhered cells, but had significant effects on the elongation of adhered cells from fluorescent observation and on the cell motility showed by the wound healing assay. The charges induced on the HA surface accelerated the cytoskeleton reorganization of the adhered cells cultured on HA specimens. The acceleration was emerged as the cells shape, actin filament pattern such as stress fiber formation, and the prolongation of the cell movement distances.


1998 ◽  
Vol 142 (5) ◽  
pp. 1357-1369 ◽  
Author(s):  
Kairbaan M. Hodivala-Dilke ◽  
C. Michael DiPersio ◽  
Jordan A. Kreidberg ◽  
Richard O. Hynes

Previously we found that α3β1 integrin–deficient neonatal mice develop micro-blisters at the epidermal–dermal junction. These micro-blisters were associated with poor basement membrane organization. In the present study we have investigated the effect of α3β1-deficiency on other keratinocyte integrins, actin-associated proteins and F-actin organization. We show that the absence of α3β1 results in an increase in stress fiber formation in keratinocytes grown in culture and at the basal face of the basal keratinocytes of α3-null epidermis. Moreover, we see a higher concentration of actin-associated proteins such as vinculin, talin, and α-actinin at focal contact sites in the α3-deficient keratinocytes. These changes in focal contact composition were not due to a change in steady-state levels of these proteins, but rather to reorganization due to α3β1 deficiency. Apart from the loss of α3β1 there is no change in expression of the other integrins expressed by the α3-null keratinocytes. However, in functional assays, α3β1 deficiency allows an increase in fibronectin and collagen type IV receptor activities. Thus, our findings provide evidence for a role of α3β1 in regulating stress fiber formation and as a trans-dominant inhibitor of the functions of the other integrins in mouse keratinocytes. These results have potential implications for the regulation of keratinocyte adhesion and migration during wound healing.


2011 ◽  
Vol 301 (5) ◽  
pp. L656-L666 ◽  
Author(s):  
Nathan Sandbo ◽  
Andrew Lau ◽  
Jacob Kach ◽  
Caitlyn Ngam ◽  
Douglas Yau ◽  
...  

Myofibroblast differentiation induced by transforming growth factor-β (TGF-β) and characterized by de novo expression of smooth muscle (SM)-specific proteins is a key process in wound healing and in the pathogenesis of fibrosis. We have previously shown that TGF-β-induced expression and activation of serum response factor (SRF) is required for this process. In this study, we examined the signaling mechanism for SRF activation by TGF-β as it relates to pulmonary myofibroblast differentiation. TGF-β stimulated a profound, but delayed (18–24 h), activation of Rho kinase and formation of actin stress fibers, which paralleled SM α-actin expression. The translational inhibitor cycloheximide blocked these processes without affecting Smad-dependent gene transcription. Inhibition of Rho kinase by Y-27632 or depolymerization of actin by latrunculin B resulted in inhibition TGF-β-induced SRF activation and SM α-actin expression, having no effect on Smad signaling. Conversely, stabilization of actin stress fibers by jasplakinolide was sufficient to drive these processes in the absence of TGF-β. TGF-β promoted a delayed nuclear accumulation of the SRF coactivator megakaryoblastic leukemia-1 (MKL1)/myocardin-related transcription factor-A, which was inhibited by latrunculin B. Furthermore, TGF-β also induced MKL1 expression, which was inhibited by latrunculin B, by SRF inhibitor CCG-1423, or by SRF knockdown. Together, these data suggest a triphasic model for myofibroblast differentiation in response to TGF-β that involves 1) initial Smad-dependent expression of intermediate signaling molecules driving Rho activation and stress fiber formation, 2) nuclear accumulation of MKL1 and activation of SRF as a result of actin polymerization, and 3) SRF-dependent expression of MKL1, driving further myofibroblast differentiation.


Author(s):  
Alex Khang ◽  
Emma Lejeune ◽  
Ali Abbaspour ◽  
Daniel Howsmon ◽  
Michael Sacks

Abstract Cell shape is known to correlate closely with stress-fiber geometry and function, and is thus a critical feature of cell biophysical state. However, the relationship between myofibroblast shape and contraction is complex, even as well in regards to steady-state contractile level (basal tonus). At present, the relationship between myofibroblast shape and basal tonus in 3D is poorly understood. Herein, we utilize the aortic valve interstitial cell (AVICs) as a representative myofibroblast to investigate the relationship between basal tonus and overall cell shape. AVICs were embedded within 3D poly (ethylene glycol) (PEG) hydrogels containing degradable peptide crosslinkers, adhesive peptide sequences, and sub-micron fluorescent micro-spheres to track the local displacement field. We then developed a methodology to evaluate the correlation between overall AVIC shape and basal tonus induced contraction. We computed a volume averaged stretch tensor <U> for the volume occupied by the AVIC, which had three distinct eigenvalues (1.08, 0.99, and 0.89), suggesting that AVIC shape is a result of anisotropic contraction. Furthermore, the direction of maximum contraction correlated closely with the longest axis of a bounding ellipsoid enclosing the AVIC. As gel--imbedded AVIC are known to be in a stable state by three days of incubation used herein, this finding suggests that the overall quiescent AVIC shape is driven by the underlying stress-fiber directional structure and possibly contraction level.


2000 ◽  
Author(s):  
Hiroshi Yamada ◽  
Tohru Takemasa ◽  
Takami Yamaguchi

Abstract To elucidate the orientation of stress fibers in a cultured endothelial cell under cyclic stretch, we hypothesized that a stress fiber aligns so as to minimize the summation of its length change under cyclic stretch, and that there is a limit in the sensitivity of cellular response to the mechanical stimulus. Results from numerical simulations based on the continuum mechanics describe the experimental observations under uniaxial stretch well. They give us an insight to the biological phenomenon of the orientation in stress fibers under biaxial stretch from the viewpoint of mechanical engineering.


Sign in / Sign up

Export Citation Format

Share Document