Developmental changes in brain activation and functional connectivity during response inhibition in the early childhood brain

2013 ◽  
Vol 35 (10) ◽  
pp. 894-904 ◽  
Author(s):  
Jan Mehnert ◽  
Atae Akhrif ◽  
Silke Telkemeyer ◽  
Sonja Rossi ◽  
Christoph H. Schmitz ◽  
...  
2018 ◽  
Vol 29 (5) ◽  
pp. 1984-1996 ◽  
Author(s):  
Dardo Tomasi ◽  
Nora D Volkow

Abstract The origin of the “resting-state” brain activity recorded with functional magnetic resonance imaging (fMRI) is still uncertain. Here we provide evidence for the neurovascular origins of the amplitude of the low-frequency fluctuations (ALFF) and the local functional connectivity density (lFCD) by comparing them with task-induced blood-oxygen level dependent (BOLD) responses, which are considered a proxy for neuronal activation. Using fMRI data for 2 different tasks (Relational and Social) collected by the Human Connectome Project in 426 healthy adults, we show that ALFF and lFCD have linear associations with the BOLD response. This association was significantly attenuated by a novel task signal regression (TSR) procedure, indicating that task performance enhances lFCD and ALFF in activated regions. We also show that lFCD predicts BOLD activation patterns, as was recently shown for other functional connectivity metrics, which corroborates that resting functional connectivity architecture impacts brain activation responses. Thus, our findings indicate a common source for BOLD responses, ALFF and lFCD, which is consistent with the neurovascular origin of local hemodynamic synchrony presumably reflecting coordinated fluctuations in neuronal activity. This study also supports the development of task-evoked functional connectivity density mapping.


2017 ◽  
Vol 42 (5) ◽  
pp. 336-350 ◽  
Author(s):  
Aishah Abdul Rahman ◽  
Daniel J Carroll ◽  
Kimberly Andrews Espy ◽  
Sandra A Wiebe

2022 ◽  
Vol 18 (1) ◽  
Author(s):  
Dazhi Cheng ◽  
Mengyi Li ◽  
Jiaxin Cui ◽  
Li Wang ◽  
Naiyi Wang ◽  
...  

Abstract Background Mathematical expressions mainly include arithmetic (such as 8 − (1 + 3)) and algebra (such as a − (b + c)). Previous studies have shown that both algebraic processing and arithmetic involved the bilateral parietal brain regions. Although previous studies have revealed that algebra was dissociated from arithmetic, the neural bases of the dissociation between algebraic processing and arithmetic is still unclear. The present study uses functional magnetic resonance imaging (fMRI) to identify the specific brain networks for algebraic and arithmetic processing. Methods Using fMRI, this study scanned 30 undergraduates and directly compared the brain activation during algebra and arithmetic. Brain activations, single-trial (item-wise) interindividual correlation and mean-trial interindividual correlation related to algebra processing were compared with those related to arithmetic. The functional connectivity was analyzed by a seed-based region of interest (ROI)-to-ROI analysis. Results Brain activation analyses showed that algebra elicited greater activation in the angular gyrus and arithmetic elicited greater activation in the bilateral supplementary motor area, left insula, and left inferior parietal lobule. Interindividual single-trial brain-behavior correlation revealed significant brain-behavior correlations in the semantic network, including the middle temporal gyri, inferior frontal gyri, dorsomedial prefrontal cortices, and left angular gyrus, for algebra. For arithmetic, the significant brain-behavior correlations were located in the phonological network, including the precentral gyrus and supplementary motor area, and in the visuospatial network, including the bilateral superior parietal lobules. For algebra, significant positive functional connectivity was observed between the visuospatial network and semantic network, whereas for arithmetic, significant positive functional connectivity was observed only between the visuospatial network and phonological network. Conclusion These findings suggest that algebra relies on the semantic network and conversely, arithmetic relies on the phonological and visuospatial networks.


2014 ◽  
Vol 39 (8) ◽  
pp. 585-599 ◽  
Author(s):  
Nicolas Chevalier ◽  
Kathleen M. Kelsey ◽  
Sandra A. Wiebe ◽  
Kimberly Andrews Espy

2019 ◽  
Vol 34 (4) ◽  
pp. 191-197
Author(s):  
Christof Karmonik ◽  
Makiko Hirata ◽  
Saba Elias ◽  
J Todd Frazier

Around 1741, composer Johann Sebastian Bach published a long and complicated keyboard piece, calling it Aria with diverse variations for a harpsichord with two manuals. It was the capstone of a publication project called German Clavier-Übung (Keyboard Practice) where Bach wanted to show what was possible at the keyboard in terms of technical development, virtuosic finesse and compositional sophistication. The music is meticulously patterned, beginning with a highly ornamented Aria, the bass line of which fuels the 30 variations that follow. The piece is clearly divided into two parts with the second half beginning with an overture with a fanfare opening, in variation 16. The piece ends as it begins, with the return of the Aria. Here, we present an investigation into activation and connectivity in the brain of a pianist, who listened to her own recording of the “Goldberg” variation while undergoing a fMRI examination. Similarity of brain connectivity is quantified and compared with the subjective scores provided by the subject.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tracy Riggins ◽  
Rebecca M. C. Spencer

Abstract Previous research has established important developmental changes in sleep and memory during early childhood. These changes have been linked separately to brain development, yet few studies have explored their interrelations during this developmental period. The goal of this report was to explore these associations in 200 (100 female) typically developing 4- to 8-year-old children. We examined whether habitual sleep patterns (24-h sleep duration, nap status) were related to children’s performance on a source memory task and hippocampal subfield volumes. Results revealed that, across all participants, after controlling for age, habitual sleep duration was positively related to source memory performance. In addition, in younger (4–6 years, n = 67), but not older (6–8 years, n = 70) children, habitual sleep duration was related to hippocampal head subfield volume (CA2-4/DG). Moreover, within younger children, volume of hippocampal subfields varied as a function of nap status; children who were still napping (n = 28) had larger CA1 volumes in the body compared to children who had transitioned out of napping (n = 39). Together, these findings are consistent with the hypothesis that habitually napping children may have more immature cognitive networks, as indexed by hippocampal integrity. Furthermore, these results shed additional light on why sleep is important during early childhood, a period of substantial brain development.


NeuroImage ◽  
2009 ◽  
Vol 47 ◽  
pp. S118
Author(s):  
K McNealy ◽  
A Martin ◽  
LA Borofsky ◽  
JC Mazziotta ◽  
M Dapretto

Sign in / Sign up

Export Citation Format

Share Document