scholarly journals Acute stress imposed during adolescence yields heightened anxiety in Sprague Dawley rats that persists into adulthood: Sex differences and potential involvement of the Medial Amygdala

2019 ◽  
Vol 1723 ◽  
pp. 146392 ◽  
Author(s):  
Dennis F. Lovelock ◽  
Terrence Deak
2004 ◽  
Vol 5 (4) ◽  
pp. 286-298 ◽  
Author(s):  
Dorie W. Schwertz ◽  
Jenny M. Beck ◽  
Jill M. Kowalski ◽  
James D. Ross

Calcium (Ca2+ ) is a key mediator of myocardial function. Calcium regulates contraction, and disruption of myocellular Ca2+ handling plays a role in cardiac pathologies such as arrhythmias and heart failure. This investigation examines sex differences in sensitivity of the contractile proteins to Ca2+ and myofibrillar Ca2+ delivery in the ventricular myocardium. Sensitivity of contractile proteins to Ca2+ was measured in weight-matched male and female Sprague-Dawley rats using the skinned ventricular papillary muscle fiber and Ca2+ -stimulated Mg2+ -dependent adenosine triphosphatase (ATPase) activity methodologies. Calcium delivery was examined by measuring the contractile response to a range of extracellular Ca2+ concentrations in isolated ventricular myocytes, papillary muscle, and the isolated perfused whole heart. Findings from studies in the whole heart suggest that at a fixed preload, the male left ventricle generates more pressure than a female ventricle over a range of extracellular Ca2+ concentrations. In contrast, results from myocyte and papillary muscle studies suggest that females require less extracellular Ca2+ to elicit a similar contractile response. Results obtained from the 2 methods used to determine sex differences in Ca2+ sensitivity were equivocal. Further studies are required to elucidate sex differences in myocardial Ca2+ handling and the reasons for disparate results in different heart muscle preparations. The results of these studies will lead to the design of sex-optimized therapeutic interventions for cardiac disease.


Hypertension ◽  
2018 ◽  
Vol 72 (Suppl_1) ◽  
Author(s):  
Reham H Soliman ◽  
Jermaine G Johnston ◽  
Eman Y Gohar ◽  
David M Pollock

1978 ◽  
Vol 235 (2) ◽  
pp. H242-H246 ◽  
Author(s):  
P. J. Baker ◽  
E. R. Ramey ◽  
P. W. Ramwell

Sex differences in the systemic depressor response to arachidonic acid (50 or 150 microgram/kg iv) were observed in intact and castrated anesthetized Sprague-Dawley rats. The rank order of responsiveness was: castrate males, castrate females, females, males; all four groups were significantly different (P less than 0.05) at the higher dose. Castrated males pretreated with testosterone (1 mg/kg sc) 5 or 7 days previously gave a response at the higher arachidonate dose levels that was of the same order as that obtained with intact males. Similar treatment of castrate males with androgen potentiated (P less than 0.05) the vasopressor action of norepinephrine (0.25 microgram/kg) on day 7 after the testosterone pretreatment. In contrast, treatment with depot estradiol (100 microgram/kg sc) in castrate males produced no significant change in the response to either of the vasoactive compounds on both days 5 and 7 after pretreatment. These data suggest that testosterone may be a significant factor in the development of sex differences in the cardiovascular systems of rats.


2020 ◽  
Vol 10 (11) ◽  
pp. 829
Author(s):  
Meredith E. Gamble ◽  
Marvin R. Diaz

Adolescent alcohol use can lead to numerous consequences, including altered stress reactivity and higher risk for later anxiety and alcohol use disorders. Many studies have examined the consequences of heavy ethanol exposure in adolescence, but far less is understood about lower levels of intoxication. The present study examined moderate adolescent ethanol exposure as a possible factor in increasing stress reactivity in adulthood, measured through general and social anxiety-like behaviors, as well voluntary ethanol intake. Male and female Sprague–Dawley rats underwent an adolescent chronic intermittent ethanol (aCIE) vapor exposure during early adolescence, reaching moderate blood ethanol concentrations. Animals then underwent two days of forced swim stress in adulthood. We found that ethanol-exposed males consumed more ethanol than their air counterparts and an interesting stress and ethanol exposure interaction in males. There were no significant effects on voluntary drinking in females. However, the social interaction test revealed increased play-fighting behavior in ethanol-exposed females and reduced social preference in females after two days of stress exposure. Overall, this work provides evidence for sex-specific, long-term effects of moderate aCIE and susceptibility to acute stress in adulthood.


Alcohol ◽  
2005 ◽  
Vol 35 (2) ◽  
pp. 113-118 ◽  
Author(s):  
Mariann R. Piano ◽  
Timothy M. Carrigan ◽  
Dorie W. Schwertz

2004 ◽  
Vol 286 (3) ◽  
pp. E425-E433 ◽  
Author(s):  
Janet C. L. Tou ◽  
Richard E. Grindeland ◽  
Charles E. Wade

Various factors can disrupt the female reproductive cycle resulting in subfertility. The primary objective of this study was to determine whether physiological changes associated with exposure to hypogravity disrupt reproductive cycles. The hindlimb suspension (HLS) model was used to simulate the major physiological effects of hypogravity in female Sprague-Dawley rats. Also, to determine whether diet may influence reproductive results, rats were fed purified American Institute of Nutrition (AIN)-93G or chow diet. Rats ( n = 9-11/group) subjected to HLS had lengthened estrous cycles due to prolonged diestrus, indicating hypoestrogenism. Interestingly, HLS rats fed AIN-93G but not chow diet had significantly reduced time spent in estrus and decreased plasma estradiol. Attenuation of hypoestrogenism in the chow-fed rats suggested that diet provided an exogenous source of estrogen. The mechanism involved in the disruption of estrous cycling remains to be determined. HLS increased urinary corticosterone (CORT) levels during the initial 4 days of HLS, suggesting that physiological responses to acute stress may be a potential mechanism in the disruption of estrous cycles. Higher basal urinary CORT was observed in rats fed chow vs. AIN-93G diet. HLS resulted in increased urinary CORT. However, two-way ANOVA indicated a significant HLS effect ( P < 0.001) but no effect of HLS × diet effect on urinary CORT levels, suggesting that estrogenic activity associated with the chow diet did not enhance the stress response. The results of this study indicate that HLS, diet, and the combination of HLS and diet influence estrous cycling. This has important implications for future reproductive success in the hypogravity environment of space.


1999 ◽  
Vol 276 (5) ◽  
pp. R1461-R1468 ◽  
Author(s):  
Gennady N. Smagin ◽  
Leigh Anne Howell ◽  
Stephen Redmann ◽  
Donna H. Ryan ◽  
Ruth B. S. Harris

We previously reported that rats exposed to repeated restraint (3 h/day for 3 days) experience temporary hypophagia and a sustained reduction in body weight compared with nonrestrained controls. Studies described here determined the involvement of central corticotropin-releasing factor (CRF) receptors in the initiation of this chronic response to acute stress. In experiment 1, Sprague-Dawley rats were fitted with cannulas in the lateral ventricle and infused with 50 μg of αhCRF-(9—41) or saline immediately before restraint on each of the 3 days of restraint. The receptor antagonist inhibited hypophagia and weight loss on day 1 of restraint but not on days 2 and 3. In experiment 2, 10 μg of αhCRF-(9—41) or saline were infused into the third ventricle immediately before each restraint. The receptor antagonist totally blocked stress-induced hypophagia and weight loss. These results demonstrate that CRF receptors located in or near the hypothalamus mediate the acute responses to stress that lead to a permanent change in the hormonal or metabolic processes that determine body weight and body composition.


Sign in / Sign up

Export Citation Format

Share Document