Effects of diet and exposure to hindlimb suspension on estrous cycling in Sprague-Dawley rats

2004 ◽  
Vol 286 (3) ◽  
pp. E425-E433 ◽  
Author(s):  
Janet C. L. Tou ◽  
Richard E. Grindeland ◽  
Charles E. Wade

Various factors can disrupt the female reproductive cycle resulting in subfertility. The primary objective of this study was to determine whether physiological changes associated with exposure to hypogravity disrupt reproductive cycles. The hindlimb suspension (HLS) model was used to simulate the major physiological effects of hypogravity in female Sprague-Dawley rats. Also, to determine whether diet may influence reproductive results, rats were fed purified American Institute of Nutrition (AIN)-93G or chow diet. Rats ( n = 9-11/group) subjected to HLS had lengthened estrous cycles due to prolonged diestrus, indicating hypoestrogenism. Interestingly, HLS rats fed AIN-93G but not chow diet had significantly reduced time spent in estrus and decreased plasma estradiol. Attenuation of hypoestrogenism in the chow-fed rats suggested that diet provided an exogenous source of estrogen. The mechanism involved in the disruption of estrous cycling remains to be determined. HLS increased urinary corticosterone (CORT) levels during the initial 4 days of HLS, suggesting that physiological responses to acute stress may be a potential mechanism in the disruption of estrous cycles. Higher basal urinary CORT was observed in rats fed chow vs. AIN-93G diet. HLS resulted in increased urinary CORT. However, two-way ANOVA indicated a significant HLS effect ( P < 0.001) but no effect of HLS × diet effect on urinary CORT levels, suggesting that estrogenic activity associated with the chow diet did not enhance the stress response. The results of this study indicate that HLS, diet, and the combination of HLS and diet influence estrous cycling. This has important implications for future reproductive success in the hypogravity environment of space.

2020 ◽  
Vol 10 (11) ◽  
pp. 829
Author(s):  
Meredith E. Gamble ◽  
Marvin R. Diaz

Adolescent alcohol use can lead to numerous consequences, including altered stress reactivity and higher risk for later anxiety and alcohol use disorders. Many studies have examined the consequences of heavy ethanol exposure in adolescence, but far less is understood about lower levels of intoxication. The present study examined moderate adolescent ethanol exposure as a possible factor in increasing stress reactivity in adulthood, measured through general and social anxiety-like behaviors, as well voluntary ethanol intake. Male and female Sprague–Dawley rats underwent an adolescent chronic intermittent ethanol (aCIE) vapor exposure during early adolescence, reaching moderate blood ethanol concentrations. Animals then underwent two days of forced swim stress in adulthood. We found that ethanol-exposed males consumed more ethanol than their air counterparts and an interesting stress and ethanol exposure interaction in males. There were no significant effects on voluntary drinking in females. However, the social interaction test revealed increased play-fighting behavior in ethanol-exposed females and reduced social preference in females after two days of stress exposure. Overall, this work provides evidence for sex-specific, long-term effects of moderate aCIE and susceptibility to acute stress in adulthood.


2019 ◽  
Vol 8 (3) ◽  
pp. 203-216 ◽  
Author(s):  
Anna C Simcocks ◽  
Kayte A Jenkin ◽  
Lannie O’Keefe ◽  
Chrishan S Samuel ◽  
Michael L Mathai ◽  
...  

Atypical cannabinoid compounds O-1602 and O-1918 are ligands for the putative cannabinoid receptors G protein-coupled receptor 55 and G protein-coupled receptor 18. The role of O-1602 and O-1918 in attenuating obesity and obesity-related pathologies is unknown. Therefore, we aimed to determine the role that either compound had on body weight and body composition, renal and hepatic function in diet-induced obesity. Male Sprague–Dawley rats were fed a high-fat diet (40% digestible energy from lipids) or a standard chow diet for 10 weeks. In a separate cohort, male Sprague–Dawley rats were fed a high-fat diet for 9 weeks and then injected daily with 5 mg/kg O-1602, 1 mg/kg O-1918 or vehicle (0.9% saline/0.75% Tween 80) for a further 6 weeks. Our data demonstrated that high-fat feeding upregulates whole kidney G protein receptor 55 expression. In diet-induced obesity, we also demonstrated O-1602 reduces body weight, body fat and improves albuminuria. Despite this, treatment with O-1602 resulted in gross morphological changes in the liver and kidney. Treatment with O-1918 improved albuminuria, but did not alter body weight or fat composition. In addition, treatment with O-1918 also upregulated circulation of pro-inflammatory cytokines including IL-1α, IL-2, IL-17α, IL-18 and RANTES as well as plasma AST. Thus O-1602 and O-1918 appear not to be suitable treatments for obesity and related comorbidities, due to their effects on organ morphology and pro-inflammatory signaling in obesity.


Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3417
Author(s):  
Jiaqi Cui ◽  
Lin Song ◽  
Rui Wang ◽  
Shuyuan Hu ◽  
Zhao Yang ◽  
...  

Maternal high-fat (HF) diet is associated with offspring metabolic disorder. This study intended to determine whether maternal metformin (MT) administration during gestation and lactation prevents the effect of maternal HF diet on offspring’s skeletal muscle (SM) development and metabolism. Pregnant Sprague-Dawley rats were divided into four groups according to maternal diet {CHOW (11.8% fat) or HF (60% fat)} and MT administration {control (CT) or MT (300 mg/kg/day)} during gestation and lactation: CH-CT, CH-MT, HF-CT, HF-MT. All offspring were weaned on CHOW diet. SM was collected at weaning and 18 weeks in offspring. Maternal metformin reduced plasma insulin, leptin, triglyceride and cholesterol levels in male and female offspring. Maternal metformin increased MyoD expression but decreased Ppargc1a, Drp1 and Mfn2 expression in SM of adult male and female offspring. Decreased MRF4 expression in SM, muscle dysfunction and mitochondrial vacuolization were observed in weaned HF-CT males, while maternal metformin normalized them. Maternal metformin increased AMPK phosphorylation and decreased 4E-BP1 phosphorylation in SM of male and female offspring. Our data demonstrate that maternal metformin during gestation and lactation can potentially overcome the negative effects of perinatal exposure to HF diet in offspring, by altering their myogenesis, mitochondrial biogenesis and dynamics through AMPK/mTOR pathways in SM.


2000 ◽  
Vol 278 (2) ◽  
pp. R529-R536 ◽  
Author(s):  
David Padrón ◽  
Michael E. Bizeau ◽  
Jeffrey R. Hazel

Our primary objective was to determine if rates of fluid-phase endocytosis (FPE) were conserved in hepatocytes from organisms acclimated and adapted to different temperatures. To this aim, the fluorescent dye Lucifer yellow was employed to measure FPE at different assay temperatures (AT) in hepatocytes from 5°C- and 20°C-acclimated trout, Oncorhynchus mykiss (at 5 and 20°C AT), 22°C- and 35°C-acclimated tilapia, Oreochromis nilotica (at 22 and 35°C AT), and the Sprague-Dawley rat (at 10, 20, and 37°C AT). FPE was also studied in rats fed a long-chain polyunsaturated fatty acid (PUFA)-enriched diet (at 10°C AT). Despite being temperature dependent, endocytic rates (values in pl ⋅ cell− 1 ⋅ h− 1) in both species of fish were compensated after a period of acclimation. For example, in 20°C-acclimated trout, the rate of endocytosis declined from 1.84 to 1.07 when the AT was reduced from 20 to 5°C; however, after a period of acclimation at 5°C, the rate (at 5°C AT) was largely restored (1.80) and almost perfectly compensated (95%). In tilapia, endocytic rates were also temperature compensated, although only partially (36%). Relatively similar rates obtained at 5°C in 5°C-acclimated trout (1.8), at 20°C in 20°C-acclimated trout (1.84), and at 22°C in 22°C-acclimated tilapia (2.2) suggest that endocytic rates are somewhat conserved in these two species of fish. In contrast, the rate in rat measured at 37°C (16.83) was severalfold greater than in fish at their respective body temperatures. A role for lipids in determining rates of endocytosis was supported by data obtained at 10°C in hepatocytes isolated from rats fed a long-chain PUFA-enriched diet: endocytic rates were higher (5.35 pl ⋅ cell− 1 ⋅ h− 1) than those of rats fed a standard chow diet (2.33 pl ⋅ cell− 1 ⋅ h− 1). The conservation of endocytic rates in fish may be related to their ability to conserve other membrane characteristics (i.e., order or phase behavior) by restructuring their membrane lipid composition or by modulating the activities of proteins that regulate endocytosis and membrane traffic, whereas the lack of conservation between fish and rat may be due to differences in metabolic rate.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 403
Author(s):  
Hui-Chun Huang ◽  
Ming-Hung Tsai ◽  
Fa-Yauh Lee ◽  
Te-Yueh Lin ◽  
Ching-Chih Chang ◽  
...  

Background: Non-alcoholic fatty liver disease (NAFLD) is linked with metabolic syndrome. Previous studies showed that obesity may disrupt adrenal function and adversely affect its counter-regulations against shock. This study hence evaluated adrenal function abnormalities in NAFLD with shock. Methods: Sprague-Dawley rats were fed with regular chow-diet (control) or high fat diet (HFD, 60% energy derived from fat). Blood tests were performed at the end of the 4th, 6th and 8th week, respectively. Experiments were performed at the end of the 8th week. Results: HFD rats developed NAFLD. HFD rats had 27% and 51% increase in plasma corticosterone at the 6th and 8th week in usual status. However, HFD rats had 5 times more reduction of mean arterial pressure in response to lipopolysaccharide-induced sepsis as compared to control rats. The corticosterone increment ratio was also lower in HFD rats, even after ACTH administration. 11β-HSD system tended to generate more corticosterone in HFD rats under hemodynamic stable status without shock and the trend was lost in HFD rats with septic shock. Conclusion: Rats with NAFLD had profound septic shock due to inadequate corticosterone response. This is, at least partly, due to 11β-HSDs dysregulation in sepsis.


1997 ◽  
Vol 273 (2) ◽  
pp. R725-R730 ◽  
Author(s):  
B. E. Levin ◽  
A. A. Dunn-Meynell ◽  
B. Balkan ◽  
R. E. Keesey

In outbred Sprague-Dawley rats, about one-half develop diet-induced obesity (DIO) on a diet relatively high in fat and energy (HE diet). The rest are diet resistant (DR), gaining weight and fat at the same rate as chow-fed controls. Here we selectively bred for high (DIO) and low (DR) weight gainers after 2 wk on HE diet. By the F5 generation, both male and female inbred DIO rats gained > 90% more weight than inbred DR rats on HE diets. Even on low-fat chow diet, DIO males were 31% and females were 22% heavier than their respective DR rats. Full metabolic characterization in male rats showed that weight-matched, chow-fed DIO-prone rats had similar energy intakes and feed efficiency [body weight (kg0.75)/energy intake (kcal)] but 44% more carcass fat than comparable DR-prone rats. Their basal plasma insulin and glucose levels in the fed state were 70 and 14% higher, respectively. But, when fasted, DIO-prone oral glucose tolerance results were comparable to DR-prone rats. Chow-fed DIO-prone males also had 42% greater 24-h urine norepinephrine levels than DR-prone males. During 2 wk on HE diet, DIO rats ate 25% more, gained 115% more weight, had 36% more carcass fat, and were 42% more feed efficient than comparable DR rats. Fasted HE diet-fed DIO rats developed frank glucose intolerance during a glucose tolerance test with 55 and 158% greater insulin and glucose areas under the curve, respectively. Thus the DIO and DR traits in the outbred Sprague-Dawley population appear to be due to a polygenic pattern of inheritance.


1999 ◽  
Vol 276 (5) ◽  
pp. R1461-R1468 ◽  
Author(s):  
Gennady N. Smagin ◽  
Leigh Anne Howell ◽  
Stephen Redmann ◽  
Donna H. Ryan ◽  
Ruth B. S. Harris

We previously reported that rats exposed to repeated restraint (3 h/day for 3 days) experience temporary hypophagia and a sustained reduction in body weight compared with nonrestrained controls. Studies described here determined the involvement of central corticotropin-releasing factor (CRF) receptors in the initiation of this chronic response to acute stress. In experiment 1, Sprague-Dawley rats were fitted with cannulas in the lateral ventricle and infused with 50 μg of αhCRF-(9—41) or saline immediately before restraint on each of the 3 days of restraint. The receptor antagonist inhibited hypophagia and weight loss on day 1 of restraint but not on days 2 and 3. In experiment 2, 10 μg of αhCRF-(9—41) or saline were infused into the third ventricle immediately before each restraint. The receptor antagonist totally blocked stress-induced hypophagia and weight loss. These results demonstrate that CRF receptors located in or near the hypothalamus mediate the acute responses to stress that lead to a permanent change in the hormonal or metabolic processes that determine body weight and body composition.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Shiran Wang ◽  
Liting Zhu ◽  
Jian Yu ◽  
Zhanzhuang Tian

Aim. The present study aims to investigate the effects of nourishing “Yin”-removing “Fire” Chinese herb mixture on the hypothalamic NKB/NK3R expression in female precocious model rats.Materials and Methods. Female Sprague-Dawley rats were randomly divided into four groups: normal (N), central precocious puberty (CPP) model (M), CPP fed with Chinese herbal mixture (CHM), and CPP fed with normal saline (MS). Rats on postnatal day 5 were given a single subcutaneous injection of 300 μg to establish CPP model rats. Rats of CHM and MS groups were continuously administered with nourishing “Yin”-removing “Fire” Chinese herb mixture or saline since postnatal day 15. The expressions of hypothalamic NKB/NK3R were detected by means of real-time PCR, western blot, and immunofluorescence histochemistry.Results. The day of vaginal opening and establishment of two regular estrous cycles were delayed in the CHM group compared with M and MS groups. The expression of hypothalamic NKB/NK3R mRNA and protein in the arcuate nucleus (ARC) and medial preoptic (MPO) area were decreased significantly in the CHM group compared with the M and MS groups on the day of onset-puberty.Conclusions. These results indicate that the NKB/NK3R signaling pathway might be involved in the effect of herbal mixture treatment on CPP.


Sign in / Sign up

Export Citation Format

Share Document