Limits on recovery in the corticospinal tract of the rat: Partial lesions impair skilled reaching and the topographic representation of the forelimb in motor cortex

2005 ◽  
Vol 66 (3) ◽  
pp. 203-211 ◽  
Author(s):  
Dionne M. Piecharka ◽  
Jeffrey A. Kleim ◽  
Ian Q. Whishaw
Neurosurgery ◽  
2010 ◽  
Vol 67 (2) ◽  
pp. 302-313 ◽  
Author(s):  
Andrea Szelényi ◽  
Elke Hattingen ◽  
Stefan Weidauer ◽  
Volker Seifert ◽  
Ulf Ziemann

Abstract OBJECTIVE To determine the degree to which the pattern of intraoperative isolated, unilateral alteration of motor evoked potential (MEP) in intracranial surgery was related to motor outcome and location of new postoperative signal alterations on magnetic resonance imaging (MRI). METHODS In 29 patients (age, 42.8 ± 18.2 years; 15 female patients; 25 supratentorial, 4 infratentorial procedures), intraoperative MEP alterations in isolation (without significant alteration in other evoked potential modalities) were classified as deterioration (> 50% amplitude decrease and/or motor threshold increase) or loss, respectively, or reversible and irreversible. Postoperative MRI was described for the location and type of new signal alteration. RESULTS New motor deficit was present in all 5 patients with irreversible MEP loss, in 7 of 10 patients with irreversible MEP deterioration, in 1 of 6 patients with reversible MEP loss, and in 0 of 8 patients with reversible MEP deterioration. Irreversible compared with reversible MEP alteration was significantly more often correlated with postoperative motor deficit (P < .0001). In 20 patients, 22 new signal alterations affected 29 various locations (precentral gyrus, n = 5; corticospinal tract, n = 19). Irreversible MEP alteration was more often associated with postoperative new signal alteration in MRI compared with reversible MEP alteration (P = .02). MEP loss was significantly more often associated with subcortically located new signal alteration (P = .006). MEP deterioration was significantly more often followed by new signal alterations located in the precentral gyrus (P = .04). CONCLUSION MEP loss bears a higher risk than MEP deterioration for postoperative motor deficit resulting from subcortical postoperative MR changes in the corticospinal tract. In contrast, MEP deterioration points to motor cortex lesion. Thus, even MEP deterioration should be considered a warning sign if surgery close to the motor cortex is performed.


2021 ◽  
Vol 118 (52) ◽  
pp. e2113192118
Author(s):  
Alzahraa Amer ◽  
Jianxun Xia ◽  
Michael Smith ◽  
John H. Martin

Although it is well known that activity-dependent motor cortex (MCX) plasticity produces long-term potentiation (LTP) of local cortical circuits, leading to enhanced muscle function, the effects on the corticospinal projection to spinal neurons has not yet been thoroughly studied. Here, we investigate a spinal locus for corticospinal tract (CST) plasticity in anesthetized rats using multichannel recording of motor-evoked, intraspinal local field potentials (LFPs) at the sixth cervical spinal cord segment. We produced LTP by intermittent theta burst electrical stimulation (iTBS) of the wrist area of MCX. Approximately 3 min of MCX iTBS potentiated the monosynaptic excitatory LFP recorded within the CST termination field in the dorsal horn and intermediate zone for at least 15 min after stimulation. Ventrolaterally, in the spinal cord gray matter, which is outside the CST termination field in rats, iTBS potentiated an oligosynaptic negative LFP that was localized to the wrist muscle motor pool. Spinal LTP remained robust, despite pharmacological blockade of iTBS-induced LTP within MCX using MK801, showing that activity-dependent spinal plasticity can be induced without concurrent MCX LTP. Pyramidal tract iTBS, which preferentially activates the CST, also produced significant spinal LTP, indicating the capacity for plasticity at the CST–spinal interneuron synapse. Our findings show CST monosynaptic LTP in spinal interneurons and demonstrate that spinal premotor circuits are capable of further modifying descending MCX control signals in an activity-dependent manner.


2020 ◽  
Vol 11 ◽  
Author(s):  
Ovidiu C. Andronesi ◽  
Katharine Nicholson ◽  
Kourosh Jafari-Khouzani ◽  
Wolfgang Bogner ◽  
Jing Wang ◽  
...  

Background: Oxidative stress and protein aggregation are key mechanisms in amyotrophic lateral sclerosis (ALS) disease. Reduced glutathione (GSH) is the most important intracellular antioxidant that protects neurons from reactive oxygen species. We hypothesized that levels of GSH measured by MR spectroscopic imaging (MRSI) in the motor cortex and corticospinal tract are linked to clinical trajectory of ALS patients.Objectives: Investigate the value of GSH imaging to probe clinical decline of ALS patients in combination with other neurochemical and structural parameters.Methods: Twenty-four ALS patients were imaged at 3 T with an advanced MR protocol. Mapping GSH levels in the brain is challenging, and for this purpose, we used an optimized spectral-edited 3D MRSI sequence with real-time motion and field correction to image glutathione and other brain metabolites. In addition, our imaging protocol included (i) an adiabatic T1ρ sequence to image macromolecular fraction of brain parenchyma, (ii) diffusion tensor imaging (DTI) for white matter tractography, and (iii) high-resolution anatomical imaging.Results: We found GSH in motor cortex (r = −0.431, p = 0.04) and corticospinal tract (r = −0.497, p = 0.016) inversely correlated with time between diagnosis and imaging. N-Acetyl-aspartate (NAA) in motor cortex inversely correlated (r = −0.416, p = 0.049), while mean water diffusivity (r = 0.437, p = 0.033) and T1ρ (r = 0.482, p = 0.019) positively correlated with disease progression measured by imputed change in revised ALS Functional Rating Scale. There is more decrease in the motor cortex than in the white matter for GSH compared to NAA, glutamate, and glutamine.Conclusions: Our study suggests that a panel of biochemical and structural imaging biomarkers defines a brain endophenotype, which can be used to time biological events and clinical progression in ALS patients. Such a quantitative brain endophenotype may stratify ALS patients into more homogeneous groups for therapeutic interventions compared to clinical criteria.


2019 ◽  
Vol 39 (48) ◽  
pp. 9660-9672 ◽  
Author(s):  
Brian I. Hyland ◽  
Sonja Seeger-Armbruster ◽  
Roseanna A. Smither ◽  
Louise C. Parr-Brownlie

1999 ◽  
Vol 81 (1) ◽  
pp. 129-139 ◽  
Author(s):  
Charles Capaday ◽  
Brigitte A. Lavoie ◽  
Hugues Barbeau ◽  
Cyril Schneider ◽  
Mireille Bonnard

Capaday, Charles, Brigitte A. Lavoie, Hugues Barbeau, Cyril Schneider, and Mireille Bonnard. Studies on the corticospinal control of human walking. I. Responses to focal transcranial magnetic stimulation of the motor cortex. J. Neurophysiol. 81: 129–139, 1999. Experiments were done to determine the extent to which the corticospinal tract is linked with the segmental motor circuits controlling ankle flexors and extensors during human walking compared with voluntary motor tasks requiring attention to the level of motor activity. The motor cortex was activated transcranially using a focal magnetic stimulation coil. For each subject, the entire input-output (I-O) curve [i.e., the integral of the motor evoked-potential (MEP) versus stimulus strength] was measured during a prescribed tonic voluntary contraction of either the tibialis anterior (TA) or the soleus. Similarly, I-O curves were measured in the early part of the swing phase, or in the early part of the stance phase of walking. The I-O data points were fitted by the Boltzmann sigmoidal function, which accounted for ≥80% of total data variance. There was no statistically significant difference between the I-O curves of the TA measured during voluntary ankle dorsiflexion or during the swing phase of walking, at matched levels of background electromyographic (EMG) activity. Additionally, there was no significant difference in the relation between the coefficient of variation and the amplitude of the MEPs measured in each task, respectively. In comparison, during the stance phase of walking the soleus MEPs were reduced on average by 26% compared with their size during voluntary ankle plantarflexion. Furthermore, during stance the MEPs in the inactive TA were enhanced relative to their size during voluntary ankle plantarflexion and in four of six subjects the TA MEPs were larger than those of the soleus. Finally, stimulation of the motor cortex at various phases of the step cycle did not reset the cycle. The time of the next step occurred at the expected moment, as determined from the phase-resetting curve. One interpretation of this result is that the motor cortex may not be part of the central neural system involved in timing the motor bursts during the step cycle. We suggest that during walking the corticospinal tract is more closely linked with the segmental motor circuits controlling the flexor, TA, than it is with those controlling the extensor, soleus. However, during voluntary tasks requiring attention to the level of motor activity, it is equally linked with the segmental motor circuits of ankle flexors or extensors.


2015 ◽  
Vol 21 (14) ◽  
pp. 1771-1780 ◽  
Author(s):  
Niels Bergsland ◽  
Maria Marcella Laganà ◽  
Eleonora Tavazzi ◽  
Matteo Caffini ◽  
Paola Tortorella ◽  
...  

Background: The relationship between white matter injury and cortical atrophy development in relapsing–remitting multiple sclerosis (RRMS) remains unclear. Objectives: To investigate the associations between corticospinal tract integrity and cortical morphology measures of the primary motor cortex in RRMS patients and healthy controls. Methods: 51 RRMS patients and 30 healthy controls underwent MRI examination for cortical reconstruction and assessment of corticospinal tract integrity. Partial correlation and multiple linear regression analyses were used to investigate the associations of focal and normal appearing white matter (NAWM) injury of the corticospinal tract with thickness and surface area measures of the primary motor cortex. Relationships between MRI measures and clinical disability as assessed by the Expanded Disability Status Scale and disease duration were also investigated. Results: In patients only, decreased cortical thickness was related to increased corticospinal tract NAWM mean, axial and radial diffusivities in addition to corticospinal tract lesion volume. The final multiple linear regression model for PMC thickness retained only NAWM axial diffusivity as a significant predictor (adjusted R2= 0.270, p= 0.001). Clinical measures were associated with NAWM corticospinal tract integrity measures. Conclusions: Primary motor cortex thinning in RRMS is related to alterations in connected white matter and is best explained by decreased NAWM integrity.


2007 ◽  
Vol 58 ◽  
pp. S103
Author(s):  
Noriyuki Higo ◽  
Yukio Nishimura ◽  
Yumi Murata ◽  
Takao Oishi ◽  
Kimika Saito ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document