Tissue hypoxia during ischemic stroke: Adaptive clues from hypoxia-tolerant animal models

2015 ◽  
Vol 114 ◽  
pp. 1-12 ◽  
Author(s):  
Thomas I. Nathaniel ◽  
Ashley Williams-Hernandez ◽  
Anan L. Hunter ◽  
Caroline Liddy ◽  
Dennis M. Peffley ◽  
...  
Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Diana L Diesen ◽  
Jonathan S Stamler

Transfusion of stored red blood cells (RBCs) is associated with a decrease in tissue oxygenation in animal models and with increased mortality and morbidity in patients. Recent studies have demonstrated that stored RBCs are deficient in vasodilatory ability and depleted of S -nitrosohemoglobin (SNO-Hb), and that renitrosylation ex vivo can increase SNO-Hb levels and restore vasoactivity. We have examined in a mouse model the extent to which transfusion impairs tissue oxygenation and whether SNO-Hb repletion can ameliorate that impairment. We report here that transfusion of (mouse) RBCs stored for 1 day or 1 week results in tissue hypoxia that is largely prevented by SNO-Hb repletion prior to transfusion ( 1 day stored blood : % decrease in oxygenation 58+/−10% untreated vs. 92+/−0.7% SNO-Hb repleted, p<0.05, n=3– 6; 1 week stored blood : % decrease in oxygenation 66+/−10% untreated vs. 91+/−2.8% SNO-Hb repleted, p<0.05, n=3– 6). Storage of mouse blood beyond human expiration-equivalents (1 month) resulted in substantial lysis and the death of all mice transfused (native and SNO-Hb repleted blood, n=5). In conclusion, repletion of SNO-Hb ameliorates the decrease in tissue oxygenation that results from transfusion of untreated stored blood. Therefore, SNO-Hb repletion may provide a simple and efficacious method to reduce transfusion-related mortality and morbidity.


2010 ◽  
Vol 30 (8) ◽  
pp. 1412-1431 ◽  
Author(s):  
David W Howells ◽  
Michelle J Porritt ◽  
Sarah SJ Rewell ◽  
Victoria O'Collins ◽  
Emily S Sena ◽  
...  

No single animal model is able to encompass all of the variables known to affect human ischemic stroke. This review highlights the major strengths and weaknesses of the most commonly used animal models of acute ischemic stroke in the context of matching model and experimental aim. Particular emphasis is placed on the relationships between outcome and underlying vascular variability, physiologic control, and use of models of comorbidity. The aim is to provide, for novice and expert alike, an overview of the key controllable determinants of experimental stroke outcome to help ensure the most effective application of animal models to translational research.


2019 ◽  
Vol 3 (2) ◽  
pp. 096-101
Author(s):  
AP Bogachuk ◽  
ZI Storozheva ◽  
AT Proshin z ◽  
VV Sherstnev ◽  
IV Smirnova ◽  
...  

2018 ◽  
Vol 315 (2) ◽  
pp. R165-R190 ◽  
Author(s):  
Annabel J. Sorby-Adams ◽  
Robert Vink ◽  
Renée J. Turner

Acute central nervous system injury, encompassing traumatic brain injury (TBI) and stroke, accounts for a significant burden of morbidity and mortality worldwide. Studies in animal models have greatly enhanced our understanding of the complex pathophysiology that underlies TBI and stroke and enabled the preclinical screening of over 1,000 novel therapeutic agents. Despite this, the translation of novel therapeutics from experimental models to clinical therapies has been extremely poor. One potential explanation for this poor clinical translation is the choice of experimental model, given that the majority of preclinical TBI and ischemic stroke studies have been conducted in small animals, such as rodents, which have small lissencephalic brains. However, the use of large animal species such as nonhuman primates, sheep, and pigs, which have large gyrencephalic human-like brains, may provide an avenue to improve clinical translation due to similarities in neuroanatomical structure when compared with widely adopted rodent models. This purpose of this review is to provide an overview of large animal models of TBI and ischemic stroke, including the surgical considerations, key benefits, and limitations of each approach.


Stroke ◽  
2018 ◽  
Vol 49 (Suppl_1) ◽  
Author(s):  
Venugopal Reddy Venna ◽  
Meaghan A Roy-O’Reilly ◽  
Matthew D Howe ◽  
Juneyoung Lee ◽  
Liang Zhu ◽  
...  

Author(s):  
Rosita Stanzione ◽  
Maurizio Forte ◽  
Maria Cotugno ◽  
Franca Bianchi ◽  
Simona Marchitti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document