A cluster based model for brain activity data staging

2022 ◽  
Vol 71 ◽  
pp. 103200
Author(s):  
André Fonseca ◽  
Camila Sardeto Deolindo ◽  
Taisa Miranda ◽  
Edgard Morya ◽  
Edson Amaro Jr ◽  
...  
2016 ◽  
Vol 371 (1705) ◽  
pp. 20160278 ◽  
Author(s):  
Nikolaus Kriegeskorte ◽  
Jörn Diedrichsen

High-resolution functional imaging is providing increasingly rich measurements of brain activity in animals and humans. A major challenge is to leverage such data to gain insight into the brain's computational mechanisms. The first step is to define candidate brain-computational models (BCMs) that can perform the behavioural task in question. We would then like to infer which of the candidate BCMs best accounts for measured brain-activity data. Here we describe a method that complements each BCM by a measurement model (MM), which simulates the way the brain-activity measurements reflect neuronal activity (e.g. local averaging in functional magnetic resonance imaging (fMRI) voxels or sparse sampling in array recordings). The resulting generative model (BCM-MM) produces simulated measurements. To avoid having to fit the MM to predict each individual measurement channel of the brain-activity data, we compare the measured and predicted data at the level of summary statistics. We describe a novel particular implementation of this approach, called probabilistic representational similarity analysis (pRSA) with MMs, which uses representational dissimilarity matrices (RDMs) as the summary statistics. We validate this method by simulations of fMRI measurements (locally averaging voxels) based on a deep convolutional neural network for visual object recognition. Results indicate that the way the measurements sample the activity patterns strongly affects the apparent representational dissimilarities. However, modelling of the measurement process can account for these effects, and different BCMs remain distinguishable even under substantial noise. The pRSA method enables us to perform Bayesian inference on the set of BCMs and to recognize the data-generating model in each case. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’.


2012 ◽  
Vol 17 (1) ◽  
pp. 5-26
Author(s):  
Hans Goller

Neuroscientists keep telling us that the brain produces consciousness and consciousness does not survive brain death because it ceases when brain activity ceases. Research findings on near-death-experiences during cardiac arrest contradict this widely held conviction. They raise perplexing questions with regard to our current understanding of the relationship between consciousness and brain functions. Reports on veridical perceptions during out-of-body experiences suggest that consciousness may be experienced independently of a functioning brain and that self-consciousness may continue even after the termination of brain activity. Data on studies of near-death-experiences could be an incentive to develop alternative theories of the body-mind relation as seen in contemporary neuroscience.


2020 ◽  
Author(s):  
Nikhil Goyal ◽  
Dustin Moraczewski ◽  
Peter Bandettini ◽  
Emily S. Finn ◽  
Adam Thomas

AbstractUnderstanding brain functionality and predicting human behavior based on functional brain activity is a major goal of neuroscience. Numerous studies have been conducted to investigate the relationship between functional brain activity and attention, subject characteristics, autism, psychiatric disorders, and more. By modeling brain activity data as networks, researchers can leverage the mathematical tools of graph and network theory to probe these relationships. In their landmark study, Smith et al. (2015) analyzed the relationship of young adult connectomes and subject measures, using data from the Human Connectome Project (HCP). Using canonical correlation analysis (CCA), Smith et al. found that there was a single prominent CCA mode which explained a statistically significant percentage of the observed variance in connectomes and subject measures. They also found a strong positive correlation of 0.87 between the primary CCA mode connectome and subject measure weights. In this study, we computationally replicate the findings of the original study in both the HCP 500 and HCP 1200 subject releases. The exact computational replication in the HCP 500 dataset was a success, validating our analysis pipeline for extension studies. The extended replication in the larger HCP 1200 dataset was partially successful and demonstrated a dominant primary mode.


Author(s):  
Soomi Lee ◽  
Susan T Charles ◽  
David M Almeida

Abstract Objectives Participating in a variety of daily activities (i.e., activity diversity) requires people to adjust to a variety of situations and engage in a greater diversity of behaviors. These experiences may, in turn, enhance cognitive functioning. This study examined associations between activity diversity and cognitive functioning across adulthood. Method Activity diversity was defined as the breadth and evenness of participation in seven common daily activity domains (e.g., paid work, time with children, leisure, physical activities, volunteering). Participants from the National Survey of Daily Experiences (NSDE: N = 732, Mage = 56) provided activity data during eight consecutive days at Wave 1 (W1) and Wave 2 (W2) 10 years apart. They also provided cognitive data at W2. Results Greater activity diversity at W2 was associated with higher overall cognitive functioning and higher executive functioning at W2. Individuals who increased activity diversity from W1 to W2 also exhibited higher scores in overall cognitive functioning and executive functioning at W2. Overall cognitive functioning, executive functioning, and episodic memory were better in those who had higher activity diversity at both waves, or increased activity diversity from W1 to W2, compared to those who had lower activity diversity or decreased activity diversity over time. Discussion Activity diversity is important for cognitive health in adulthood. Future work can study the directionality between activity diversity and cognitive functioning and underlying social and neurological mechanisms for these associations.


2003 ◽  
Vol 26 (6) ◽  
pp. 672-673
Author(s):  
Valéria Csépe

Brain activity data prove the existence of qualitatively different structures in the brain. However, the question is whether the human brain acts as linguists assume in their models. The modular architecture of grammar that has been claimed by many linguists raises some empirical questions. One of the main questions is whether the threefold abstract partition of language (into syntactic, phonological, and semantic domains) has distinct neural correlates.


Author(s):  
Zara Mansoor ◽  
Mustansar Ali Ghazanfar ◽  
Syed Muhammad Anwar ◽  
Ahmed S. Alfakeeh ◽  
Khaled H. Alyoubi

2016 ◽  
Vol 67 (4) ◽  
pp. 157 ◽  
Author(s):  
J. Vivancos ◽  
N. Tena ◽  
M. T. Morales ◽  
R. Aparicio ◽  
D. L. García-González

Functional magnetic resonance imaging (fMRI) has been used to collect information from neurons that receive direct input from olfactory bulbs when subjects smell virgin olive oil. The pleasant aroma of three extra virgin olive oils (var. Royal, Arbequina and Picual) and three virgin olive oils with sensory defects (rancid, fusty and winey/vinegary) were presented to 14 subjects while a fMRI scan acquired data from the brain activity. Data were subjected to a two-sample t test analysis, which allows a better interpretation of results particularly when data are studied across different subjects. Most of the activations, which were located in the frontal lobe, are related to the olfactory task regardless of the hedonic component of perception (e.g. Brodmann areas 10, 11). Comparing the samples with pleasant and unpleasant aromas, differences were found at the anterior cingulate gyrus (Brodmann area 32), at the temporal lobe (Brodmann area 38), and inferior frontal gyrus (Brodmann area 47), while intense aromas activated Brodmann area 6. The actual perceptions described by the subjects and the concentration of the odorant compounds in the samples were considered in the interpretation of the results.


2011 ◽  
Vol 71 ◽  
pp. e305 ◽  
Author(s):  
Taku Yoshioka ◽  
Okito Yamashita ◽  
Yusuke Takeda ◽  
Daniel Callan ◽  
Masa-aki Sato

2021 ◽  
Vol 11 (16) ◽  
pp. 7644
Author(s):  
Miguel Ángel Sánchez-Cifo ◽  
Francisco Montero ◽  
María Teresa López

Collecting data allows researchers to store and analyze important information about activities, events, and situations. Gathering this information can also help us make decisions, control processes, and analyze what happens and when it happens. In fact, a scientific investigation is the way scientists use the scientific method to collect the data and evidence that they plan to analyze. Neuroscience and other related activities are set to collect their own big datasets, but to exploit their full potential, we need ways to standardize, integrate, and synthesize diverse types of data. Although the use of low-cost ElectroEncephaloGraphy (EEG) devices has increased, such as those whose price is below 300 USD, their role in neuroscience research activities has not been well supported; there are weaknesses in collecting the data and information. The primary objective of this paper was to describe a tool for data management and visualization, called MuseStudio, for low-cost devices; specifically, our tool is related to the Muse brain-sensing headband, a personal meditation assistant with additional possibilities. MuseStudio was developed in Python following the best practices in data analysis and is fully compatible with the Brain Imaging Data Structure (BIDS), which specifies how brain data must be managed. Our open-source tool can import and export data from Muse devices and allows viewing real-time brain data, and the BIDS exporting capabilities can be successfully validated following the available guidelines. Moreover, these and other functional and nonfunctional features were validated by involving five experts as validators through the DESMET method, and a latency analysis was also performed and discussed. The results of these validation activities were successful at collecting and managing electroencephalogram data.


Author(s):  
Satoshi Miura ◽  
Kazuya Kawamura ◽  
Masakatsu Fujie ◽  
Shigeki Sugano ◽  
Tomoyuki Miyashita

AbstractPipe inspection robots have been developed to reduce the cost and time required for gas pipe inspection. However, these robots have been developed using a scrap and build method and are not used in practice. In this paper, we propose a method of virtual pipe inspection simulation to clarify the parameters that are important in increasing the robot's ease of use. This paper presents the results obtained by a feasibility study with regard to pipe simulation. We developed a virtual pipe by simulating eight actual turns of an external gas pipe, and a robot equipped with camera at the tip. In the experiments, three individuals working in the field of gas inspection carried out the operation. We obtained questionnaire, time, and brain activity data. The results revealed various important points that must be considered in practical simulation and robot design. In conclusion, the virtual pipe simulation can be useful in developing the design of a pipe inspection robot.


Sign in / Sign up

Export Citation Format

Share Document