scholarly journals Inferring brain-computational mechanisms with models of activity measurements

2016 ◽  
Vol 371 (1705) ◽  
pp. 20160278 ◽  
Author(s):  
Nikolaus Kriegeskorte ◽  
Jörn Diedrichsen

High-resolution functional imaging is providing increasingly rich measurements of brain activity in animals and humans. A major challenge is to leverage such data to gain insight into the brain's computational mechanisms. The first step is to define candidate brain-computational models (BCMs) that can perform the behavioural task in question. We would then like to infer which of the candidate BCMs best accounts for measured brain-activity data. Here we describe a method that complements each BCM by a measurement model (MM), which simulates the way the brain-activity measurements reflect neuronal activity (e.g. local averaging in functional magnetic resonance imaging (fMRI) voxels or sparse sampling in array recordings). The resulting generative model (BCM-MM) produces simulated measurements. To avoid having to fit the MM to predict each individual measurement channel of the brain-activity data, we compare the measured and predicted data at the level of summary statistics. We describe a novel particular implementation of this approach, called probabilistic representational similarity analysis (pRSA) with MMs, which uses representational dissimilarity matrices (RDMs) as the summary statistics. We validate this method by simulations of fMRI measurements (locally averaging voxels) based on a deep convolutional neural network for visual object recognition. Results indicate that the way the measurements sample the activity patterns strongly affects the apparent representational dissimilarities. However, modelling of the measurement process can account for these effects, and different BCMs remain distinguishable even under substantial noise. The pRSA method enables us to perform Bayesian inference on the set of BCMs and to recognize the data-generating model in each case. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’.

2012 ◽  
Vol 17 (1) ◽  
pp. 5-26
Author(s):  
Hans Goller

Neuroscientists keep telling us that the brain produces consciousness and consciousness does not survive brain death because it ceases when brain activity ceases. Research findings on near-death-experiences during cardiac arrest contradict this widely held conviction. They raise perplexing questions with regard to our current understanding of the relationship between consciousness and brain functions. Reports on veridical perceptions during out-of-body experiences suggest that consciousness may be experienced independently of a functioning brain and that self-consciousness may continue even after the termination of brain activity. Data on studies of near-death-experiences could be an incentive to develop alternative theories of the body-mind relation as seen in contemporary neuroscience.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Ranjan Kumar Mishra ◽  
G. Y. Sandesh Reddy ◽  
Himanshu Pathak

Deep learning is a computer-based modeling approach, which is made up of many processing layers that are used to understand the representation of data with several levels of abstraction. This review paper presents the state of the art in deep learning to highlight the major challenges and contributions in computer vision. This work mainly gives an overview of the current understanding of deep learning and their approaches in solving traditional artificial intelligence problems. These computational models enhanced its application in object detection, visual object recognition, speech recognition, face recognition, vision for driverless cars, virtual assistants, and many other fields such as genomics and drug discovery. Finally, this paper also showcases the current developments and challenges in training deep neural network.


Author(s):  
Soomi Lee ◽  
Susan T Charles ◽  
David M Almeida

Abstract Objectives Participating in a variety of daily activities (i.e., activity diversity) requires people to adjust to a variety of situations and engage in a greater diversity of behaviors. These experiences may, in turn, enhance cognitive functioning. This study examined associations between activity diversity and cognitive functioning across adulthood. Method Activity diversity was defined as the breadth and evenness of participation in seven common daily activity domains (e.g., paid work, time with children, leisure, physical activities, volunteering). Participants from the National Survey of Daily Experiences (NSDE: N = 732, Mage = 56) provided activity data during eight consecutive days at Wave 1 (W1) and Wave 2 (W2) 10 years apart. They also provided cognitive data at W2. Results Greater activity diversity at W2 was associated with higher overall cognitive functioning and higher executive functioning at W2. Individuals who increased activity diversity from W1 to W2 also exhibited higher scores in overall cognitive functioning and executive functioning at W2. Overall cognitive functioning, executive functioning, and episodic memory were better in those who had higher activity diversity at both waves, or increased activity diversity from W1 to W2, compared to those who had lower activity diversity or decreased activity diversity over time. Discussion Activity diversity is important for cognitive health in adulthood. Future work can study the directionality between activity diversity and cognitive functioning and underlying social and neurological mechanisms for these associations.


2003 ◽  
Vol 26 (6) ◽  
pp. 672-673
Author(s):  
Valéria Csépe

Brain activity data prove the existence of qualitatively different structures in the brain. However, the question is whether the human brain acts as linguists assume in their models. The modular architecture of grammar that has been claimed by many linguists raises some empirical questions. One of the main questions is whether the threefold abstract partition of language (into syntactic, phonological, and semantic domains) has distinct neural correlates.


Author(s):  
Ole Adrian Heggli ◽  
Ivana Konvalinka ◽  
Joana Cabral ◽  
Elvira Brattico ◽  
Morten L Kringelbach ◽  
...  

Abstract Interpersonal coordination is a core part of human interaction, and its underlying mechanisms have been extensively studied using social paradigms such as joint finger-tapping. Here, individual and dyadic differences have been found to yield a range of dyadic synchronization strategies, such as mutual adaptation, leading–leading, and leading–following behaviour, but the brain mechanisms that underlie these strategies remain poorly understood. To identify individual brain mechanisms underlying emergence of these minimal social interaction strategies, we contrasted EEG-recorded brain activity in two groups of musicians exhibiting the mutual adaptation and leading–leading strategies. We found that the individuals coordinating via mutual adaptation exhibited a more frequent occurrence of phase-locked activity within a transient action–perception-related brain network in the alpha range, as compared to the leading–leading group. Furthermore, we identified parietal and temporal brain regions that changed significantly in the directionality of their within-network information flow. Our results suggest that the stronger weight on extrinsic coupling observed in computational models of mutual adaptation as compared to leading–leading might be facilitated by a higher degree of action–perception network coupling in the brain.


2008 ◽  
Vol 31 (4) ◽  
pp. 398-399
Author(s):  
James E. Swain ◽  
John D. Swain

AbstractIf connectionist computational models explain the acquisition of complex cognitive skills, errors in such models would also help explain unusual brain activity such as in creativity – as well as in mental illness, including childhood onset problems with social behaviors in autism, the inability to maintain focus in attention deficit and hyperactivity disorder (ADHD), and the lack of motivation of depression disorders.


2020 ◽  
Author(s):  
Sreejan Kumar ◽  
Cameron T. Ellis ◽  
Thomas O’Connell ◽  
Marvin M Chun ◽  
Nicholas B. Turk-Browne

AbstractThe extent to which brain functions are localized or distributed is a foundational question in neuroscience. In the human brain, common fMRI methods such as cluster correction, atlas parcellation, and anatomical searchlight are biased by design toward finding localized representations. Here we introduce the functional searchlight approach as an alternative to anatomical searchlight analysis, the most commonly used exploratory multivariate fMRI technique. Functional searchlight removes any anatomical bias by grouping voxels based only on functional similarity and ignoring anatomical proximity. We report evidence that visual and auditory features from deep neural networks and semantic features from a natural language processing model are more widely distributed across the brain than previously acknowledged. This approach provides a new way to evaluate and constrain computational models with brain activity and pushes our understanding of human brain function further along the spectrum from strict modularity toward distributed representation.


2020 ◽  
Author(s):  
Carlos Coronel-Oliveros ◽  
Rodrigo Cofré ◽  
Patricio Orio

AbstractSegregation and integration are two fundamental principles of brain structural and functional organization. Neuroimaging studies have shown that the brain transits between different functionally segregated and integrated states, and neuromodulatory systems have been proposed as key to facilitate these transitions. Although computational models have reproduced the effect of neuromodulation at the whole-brain level, the role of local inhibitory circuits and their cholinergic modulation has not been studied. In this article, we consider a Jansen & Rit whole-brain model in a network interconnected using a human connectome, and study the influence of the cholinergic and noradrenergic neuromodulatory systems on the segregation/integration balance. In our model, a newly introduced local inhibitory feedback enables the integration of whole-brain activity, and its modulation interacts with the other neuromodulatory influences to facilitate the transit between different functional states. Moreover, the new proposed model is able to reproduce an inverted-U relationship between noradrenergic modulation and network integration. Our work proposes a new possible mechanism behind segregation and integration in the brain.


2020 ◽  
pp. 40-175
Author(s):  
Edmund T. Rolls

The brain processes involved in visual object recognition are described. Evidence is presented that what is computed are sparse distributed representations of objects that are invariant with respect to transforms including position, size, and even view in the ventral stream towards the inferior temporal visual cortex. Then biologically plausible unsupervised learning mechanisms that can perform this computation are described that use a synaptic modification rule what utilises a memory trace. These are compared with deep learning and other machine learning approaches that require supervision.


Sign in / Sign up

Export Citation Format

Share Document