scholarly journals Scalable methodology for large scale building energy improvement: Relevance of calibration in model-based retrofit analysis

2015 ◽  
Vol 87 ◽  
pp. 342-350 ◽  
Author(s):  
Yeonsook Heo ◽  
Godfried Augenbroe ◽  
Diane Graziano ◽  
Ralph T. Muehleisen ◽  
Leah Guzowski
2020 ◽  
Vol 140 (4) ◽  
pp. 272-280
Author(s):  
Wataru Ohnishi ◽  
Hiroshi Fujimoto ◽  
Koichi Sakata

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1261
Author(s):  
Christopher Gradwohl ◽  
Vesna Dimitrievska ◽  
Federico Pittino ◽  
Wolfgang Muehleisen ◽  
András Montvay ◽  
...  

Photovoltaic (PV) technology allows large-scale investments in a renewable power-generating system at a competitive levelized cost of electricity (LCOE) and with a low environmental impact. Large-scale PV installations operate in a highly competitive market environment where even small performance losses have a high impact on profit margins. Therefore, operation at maximum performance is the key for long-term profitability. This can be achieved by advanced performance monitoring and instant or gradual failure detection methodologies. We present in this paper a combined approach on model-based fault detection by means of physical and statistical models and failure diagnosis based on physics of failure. Both approaches contribute to optimized PV plant operation and maintenance based on typically available supervisory control and data acquisition (SCADA) data. The failure detection and diagnosis capabilities were demonstrated in a case study based on six years of SCADA data from a PV plant in Slovenia. In this case study, underperforming values of the inverters of the PV plant were reliably detected and possible root causes were identified. Our work has led us to conclude that the combined approach can contribute to an efficient and long-term operation of photovoltaic power plants with a maximum energy yield and can be applied to the monitoring of photovoltaic plants.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 931
Author(s):  
Karolina Mucha-Kuś ◽  
Maciej Sołtysik ◽  
Krzysztof Zamasz ◽  
Katarzyna Szczepańska-Woszczyna

The decentralization of the large-scale energy sector, its replacement with pro-ecological, dispersed production sources and building a citizen dimension of the energy sector are the directional objectives of the energy transformation in the European Union. Building energy self-sufficiency at a local level is possible, based on the so-called Energy Communities, which include energy clusters and energy cooperatives. Several dozen pilot projects for energy clusters have been implemented in Poland, while energy cooperatives, despite being legally sanctioned and potentially a simpler formula of operation, have not functioned in practice. This article presents the coopetitive nature of Energy Communities. The authors analysed the principles and benefits of creating Energy Communities from a regulatory and practical side. An important element of the analysis is to indicate the managerial, coopetitive nature of the strategies implemented within the Energy Communities. Their members, while operating in a competitive environment, simultaneously cooperate to achieve common benefits. On the basis of the actual data of recipients and producers, the results of simulations of benefits in the economic dimension will be presented, proving the thesis of the legitimacy of creating coopetitive structures of Energy Communities.


2017 ◽  
Vol 50 (1) ◽  
pp. 3287-3293 ◽  
Author(s):  
Erik Frisk ◽  
Mattias Krysander ◽  
Daniel Jung

Sign in / Sign up

Export Citation Format

Share Document