Objective and subjective evaluation of a sleeping environment test chamber with a thermoelectric air cooling system

2018 ◽  
Vol 141 ◽  
pp. 155-165 ◽  
Author(s):  
Kashif Irshad ◽  
Asif Irshad Khan ◽  
Salem Algarni ◽  
Khairul Habib ◽  
Bidyut Baran Saha
2018 ◽  
Vol 12 (4) ◽  
pp. 4117-4126
Author(s):  
P. Rakkwamsuk ◽  
P. Paromupatham ◽  
K. Sathapornprasath ◽  
C. Lertsatitthanakorn ◽  
S. Soponronnarit

A thermoelectric (TE) air-cooling system for dehumidifying indoor air in a building was investigated. The system was composed of 4 TE modules. The cold sides of the TE modules were fixed to an aluminum heat sink to remove moisture in the air of a test chamber of 1 m3 volume, while a heat sink with circulating cooling water at the hot sides of the TE modules was used for heat release. The effects of input electric current to the TE modules and air flow rate through the heat sink were experimentally determined. The system’s performance was evaluated using dehumidification effectiveness and coefficient of performance (COP). A suitable condition occurred at 18.5 A of current flow and 240 W of power being supplied to the TE modules with a corresponding cooling capacity of 149.5 W, which gave a dehumidification effectiveness of 0.62. Therefore, it is anticipated the proposed TE dehumidifier concept will contribute to the air conditioning system’s reduction of room humidity. 


2019 ◽  
Vol 152 ◽  
pp. 214-227 ◽  
Author(s):  
Kashif Irshad ◽  
Salem Algarni ◽  
Basharat Jamil ◽  
Mohammad Tauheed Ahmad ◽  
Mohammad Arsalan Khan

2021 ◽  
Vol 09 (03) ◽  
pp. E482-E486
Author(s):  
Stanislas Chaussade ◽  
Einas Abou Ali ◽  
Rachel Hallit ◽  
Arthur Belle ◽  
Maximilien Barret ◽  
...  

Abstract Background and study aims The role that air circulation through a gastrointestinal endoscopy system plays in airborne transmission of microorganisms has never been investigated. The aim of this study was to explore the potential risk of transmission and potential improvements in the system. Methods We investigated and described air circulation into gastrointestinal endoscopes from Fujifilm, Olympus, and Pentax. Results The light source box contains a lamp, either Xenon or LED. The temperature of the light is high and is regulated by a forced-air cooling system to maintain a stable temperature in the middle of the box. The air used by the forced-air cooling system is sucked from the closed environment of the patient through an aeration port, located close to the light source and evacuated out of the box by one or two ventilators. No filter exists to avoid dispersion of particles outside the processor box. The light source box also contains an insufflation air pump. The air is sucked from the light source box through one or two holes in the air pump and pushed from the air pump into the air pipe of the endoscope through a plastic tube. Because the air pump does not have a dedicated HEPA filter, transmission of microorganisms cannot be excluded. Conclusions Changes are necessary to prevent airborne transmission. Exclusive use of an external CO2 pump and wrapping the endoscope platform with a plastic film will limit scatter of microorganisms. In the era of pandemic virus with airborne transmission, improvements in gastrointestinal ventilation systems are necessary to avoid contamination of patients and health care workers.


2015 ◽  
Vol 76 ◽  
pp. 449-461 ◽  
Author(s):  
Mehdi A. Ehyaei ◽  
Mojtaba Tahani ◽  
Pouria Ahmadi ◽  
Mohammad Esfandiari

Author(s):  
A. Al Bassam ◽  
Y. M. Al Said

This paper summarizes the experiences with the first gas turbine inlet air cooling project in Saudi Arabia. It will cover the feasibility study, cooling system options, overview, system equipment description, process flow diagram, construction, commissioning, start-up and performance of the project which is currently under commissioning and initial start up at Qassim Central Power Plant (QCPP) owned by Saudi Electric Company (S.E.C.) Central Region Branch.


2015 ◽  
Vol 741 ◽  
pp. 536-540
Author(s):  
Xiao Zhi Qiu ◽  
Yan Ming Zhao ◽  
Bao Hua Huang ◽  
Wei Xu

Based on the analysis of indirect air cooling system, a numerical simulation model of indirect air cooling system was constructed by ANSYS software. According to the different wind speed condition, the temperature characteristic of indirect air cooling system was analyzed. The simulation results show that with the increase of wind speed, the ventilation and heat release of the indirect air cooling system change greatly. It provides a theoretical basis for the design of the wind-proof device of indirect air cooling system.


Sign in / Sign up

Export Citation Format

Share Document