A one-dimensional fluid simulation of a magnetized DC discharge including the non-uniform effects of the magnetic field

2009 ◽  
Vol 9 (3) ◽  
pp. 647-650 ◽  
Author(s):  
Hee-Jung Kim ◽  
Deuk-Chul Kwon ◽  
Nam-Sik Yoon
2016 ◽  
Vol 34 (4) ◽  
pp. 421-425
Author(s):  
Christian Nabert ◽  
Karl-Heinz Glassmeier

Abstract. Shock waves can strongly influence magnetic reconnection as seen by the slow shocks attached to the diffusion region in Petschek reconnection. We derive necessary conditions for such shocks in a nonuniform resistive magnetohydrodynamic plasma and discuss them with respect to the slow shocks in Petschek reconnection. Expressions for the spatial variation of the velocity and the magnetic field are derived by rearranging terms of the resistive magnetohydrodynamic equations without solving them. These expressions contain removable singularities if the flow velocity of the plasma equals a certain characteristic velocity depending on the other flow quantities. Such a singularity can be related to the strong spatial variations across a shock. In contrast to the analysis of Rankine–Hugoniot relations, the investigation of these singularities allows us to take the finite resistivity into account. Starting from considering perpendicular shocks in a simplified one-dimensional geometry to introduce the approach, shock conditions for a more general two-dimensional situation are derived. Then the latter relations are limited to an incompressible plasma to consider the subcritical slow shocks of Petschek reconnection. A gradient of the resistivity significantly modifies the characteristic velocity of wave propagation. The corresponding relations show that a gradient of the resistivity can lower the characteristic Alfvén velocity to an effective Alfvén velocity. This can strongly impact the conditions for shocks in a Petschek reconnection geometry.


2020 ◽  
Vol 12 (08) ◽  
pp. 2050085
Author(s):  
Chao Liang ◽  
Chunli Zhang ◽  
Weiqiu Chen ◽  
Jiashi Yang

We study the electromechanical and electrical behaviors of a PN junction in a multiferroic composite fiber, consisting of a piezoelectric semiconductor (PS) layer between two piezomagnetic (PM) layers, under a transverse magnetic field. Based on the derived one-dimensional model for multiferroic composite semiconductor structures, we obtain the linear analytical solution for the built-in potential and electric field in the junction when there is no applied voltage between the two ends of the fiber. When a bias voltage is applied over the two ends of the fiber, a nonlinear numerical analysis is performed for the current–voltage relation. Both a homogeneous junction with a uniform PS layer and a heterogeneous junction with two different PSs on different sides of the junctions are studied. It is found that overall the homogeneous junction is essentially unaffected by the magnetic field, and the heterojunction is sensitive to the magnetic field with potential applications in piezotronics.


Author(s):  
Enza Orlandi ◽  
Livio Triolo

We consider the one-dimensional, nonlocal, evolution equation derived by De Masi et al. (1995) for Ising systems with Glauber dynamics, Kac potentials and magnetic field. We prove the existence of travelling fronts, their uniqueness modulo translations among the monotone profiles and their linear stability for all the admissible values of the magnetic field for which the underlying spin system exhibits a stable and metastable phase.


2015 ◽  
Vol 81 (6) ◽  
Author(s):  
H. K. Moffatt

A one-dimensional model of magnetic relaxation in a pressureless low-resistivity plasma is considered. The initial two-component magnetic field $\boldsymbol{b}(\boldsymbol{x},t)$ is strongly helical, with non-uniform helicity density. The magnetic pressure gradient drives a velocity field that is dissipated by viscosity. Relaxation occurs in two phases. The first is a rapid initial phase in which the magnetic energy drops sharply and the magnetic pressure becomes approximately uniform; the helicity density is redistributed during this phase but remains non-uniform, and although the total helicity remains relatively constant, a Taylor state is not established. The second phase is one of slow diffusion, in which the velocity is weak, though still driven by persistent weak non-uniformity of magnetic pressure; during this phase, magnetic energy and helicity decay slowly and at constant ratio through the combined effects of pressure equalisation and finite resistivity. The density field, initially uniform, develops rapidly (in association with the magnetic field) during the initial phase, and continues to evolve, developing sharp maxima, throughout the diffusive stage. Finally it is proved that, if the resistivity is zero, the spatial mean $\langle (\boldsymbol{b}\boldsymbol{\cdot }\boldsymbol{{\rm\nabla}}\times \boldsymbol{b})/b^{2}\rangle$ is an invariant of the governing one-dimensional induction equation.


Sign in / Sign up

Export Citation Format

Share Document